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Preface: Phenomenon of Social Networks

Networks had existed since the old days: the road network in the ancient Rome,
mail networks in the Middle Ages, or railway, telegraph, and telephone networks.
Among recent examples, we should mention telecommunication networks. Each
new type of networks had facilitated communication of people and hence promoted
progress.

At the same time, as any phenomenon the development of networks has positive
and negative features. For instance, some scientists are predicting the future
formation of a new “slaveholding society” in which power will be gradually seized
by global networks and corporations; moreover, this process is running now. Such
structures will control each individual in order to fulfill certain requirements. Even
the term of “netocracy” [15] has appeared in literature—a new form of society
control in which the basic value is not tangible resources (currency, immovable
property, etc.) but information as well as different structures to store, process and
transmit it. For example, the concepts of corporate brand and logo, corporate style,
corporate ethics, corporate parties, corporate holidays (or retreat) have become
widespread. Also note shopping in corporate stores. Behind all these concepts there
is a drive to keep a man, his family and social environment in full view, under
control. Surveillance cameras are being mounted everywhere—streets, banks,
supermarkets, etc. Almost every man with his personal data is included in tens of
databases and databanks. Much personal data can be found on the Internet, and we
may even know nothing about their existence and availability …

Among network resources, a gradually growing role is played by online social
networks: in addition to the functions of communication, opinions exchange and
information acquisition, in recent time they have been intensively used as the
objects and means of informational control and an arena of informational con-
frontation. In fact, they have become a considerable tool of informational influence,
particularly for a proper manipulation of an individual, social groups and the whole
society, as well as a battlefield of information warfare (cyberwars).

Social Networks. In this book, we consider models of social networks that have
become widespread recently as informal communities—a tool for communication,
opinions exchange and information acquisition. At qualitative level, a social
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network is understood as a social structure consisting of a set of agents (subjects,
individual or collective, e.g., persons, families, groups, organizations) and also a set
of relations defined over it (an aggregate of connections among agents such as
acquaintance, friendship, cooperation, communications). Formally, a social network
represents a graph G(N, E) in which N = {1, 2, …, n} denotes a finite set of nodes
(agents) and E a set of edges reflecting the interaction of different agents. Numerous
examples of social networks will be given below.

Social networks facilitate, first, the organization of social communications of
people and, second, the satisfaction of their basic social needs. It is possible to
identify two intersecting treatments of social network—as a social structure and its
specific Internet implementation.

Sociometry, a descriptive framework for social groups in terms of graph theory,
was pioneered and further developed by J. Moreno. The concept of social networks
was introduced in 1954 by sociologist J. Barnes in [16] and disseminated through
scientific community (not only among sociologists1) since the early 2000s,
following the tremendous advancement of Internet-based technologies. Presently
there is a shortfall in a systematic description of network analysis methods and
algorithms for modern applied research.

Speaking about the attractiveness of social networks, we may separate out the
following capabilities for users:

– information acquisition (particularly, revelation of resources) from other social
network members;

– verification of different ideas through interactions within a social network;
– the social benefits of contacts (involvement, self-identification, social identifi-

cation, social adoption, etc.);
– recreation (leisure, pastime).

The keywords of almost any social network model are agent, opinion,
influence/trust, and reputation—see Fig. 1. These concepts will be rigorously
defined below although everybody knows their common meaning.

Examples and Classification of Opinions for Online Social Network
Members. A factor that determines the attractiveness of online social networks for
users is the capability to express their opinions (to judge or give an assessment of
some issue), see Figs. 2–4. Generally, an opinion is expressed in text form as
follows.

1 The structure of social objects had been intensively studied in sociology since the 1950s,
simultaneously with an active use of graph theory in sociometry. International Network for Social
Network Analysis (INSNA), the professional association for researchers interested in social
network analysis, was established in 1977. Social Networks, an international journal of structural
analysis, was launched in 1978. We also mention other electronic periodicals such as Connections,
Journal of Social Structure, etc. This book does not claim for a complete overview of numerous
social network analysis results obtained in sociology (e.g., see [85, 118, 220]).
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(1) Private correspondence (text). User A, “It is cold today. I think it will be about—
30°C tomorrow and also this week.” User B, “Cold cannot be for so long.”

(2) In a blog or forum at the web page of messages or comments.

An example is an opinion expressed on a car forum (http://www.drive.ru). “The
question is, “How fast does my car go from 0 to 100?” A common answer is, “The
devil only knows!” But any owner of Audi RS6 would surely answer, even in a
dream, “Four and a half seconds…Well, no! Four and six-tenths seconds.” Here the
opinion is also a real value.

Alternatively, an opinion can be expressed using special mechanisms imple-
mented by social network developers, e.g., as follows.

(3) Statements about competencies (see LinkedIn).
(4) Opinion poll. A user has to choose an alternative from a fixed set, thereby

expressing his/her opinion.
(5) Assessment of somebody or something, depending on the thematic scope of a

social network. For example, the assessments of movies using the 10-rating
scale at https://www.imdb.com, see Fig. 4.

A classification of different types of opinions is illustrated in Fig. 5.
This book does not consider mathematical models of the social networks with

non-numerical (descriptive text, a fixed set of options) and multicriteria opinions
of members. All other cases—see the solid lines in Fig. 5—will be described
below.

Properties of Social Networks. For proper modeling of social networks, the
mutual influence of their members and opinion dynamics, it is necessary to consider
a series of factors (effects) occurring in real social networks. Generally speaking,
real social networks may have the following effects and properties caused by the
characteristics and demands of agents (who exert influence and are subjected to

AGENT

Opinion

Influence/
trust Reputation

Fig. 1 Basic concepts of social network model
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Fig. 2 FIFA World Cup post in Facebook: Example of opinion
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influence), the character of their interactions, and the internal properties of a given
social network2:

(1) individual opinions of agents;
(2) variable opinions under an influence of other network members;
(3) different significance of opinions (influence, trust) of given agents for other

agents;
(4) different degrees of agent’s susceptibility to influence (conformity, stability

of opinions);
(5) an indirect influence through a chain of social contacts. Smaller indirect

influence for higher “distance” between agents;
(6) opinion leaders (agents with maximal influence), formalization of influence

indexes;

Fig. 3 Example of opinion poll in Facebook

2The keywords in the list below are underlined.

Preface: Phenomenon of Social Networks ix



Fig. 4 Movie assessment in IMDB

OPINIONS

Non-numerical Numerical

Single-criterion Multicriteria

Discrete Continuous

Binary

Text Fixed

Fig. 5 Classification of different types of opinions
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(7) a threshold of sensitivity to opinion variations of a neighborhood;
(8) local groups (by interests, by close opinions);
(9) specific social norms;

(10) social correlation factors (common for groups of agents);
(11) external factors of influence (advertising, marketing events) and external

agents (mass media, product suppliers, etc.);
(12) stages—typical phases of opinion dynamics for social network members

(e.g., diffusion of innovations);
(13) avalanche-like effects (cascades);
(14) the influence of structural properties of social networks on opinion dynamics:

– an agent with more connections has wider capabilities to influence the
whole network through his/her neighborhood (on the one hand) but
higher susceptibility to an external influence (on the other hand);

– clustering (an agent having active neighbors with dense connections
changes his/her state with higher probability; also see the related concept
of strong tie);

– local mediation (an agent with higher degree of mediation contributes
more to the spread of opinions/information from one part of a social
network to another (the role of information broker) but has smaller
influence on his neighbors; also see the related concept of weak tie3);

– a social network of small diameter has a short chain of opinions
spreading;

(15) active agents (with purposeful behavior);
(16) possible groups and coalitions of agents;
(17) incomplete and/or asymmetric awareness of agents, decision-making under

uncertainty;
(18) nontrivial mutual awareness (reflexion) of agents;
(19) game-based interaction of agents;
(20) optimization of informational influence;
(21) informational control in social networks.

These empirical effects and properties, to be discussed in detail below, appear in
models that claim for an adequate description of real social networks (see Chap. 2
of the book).

Size and Value of Network. As a matter of fact, social networks attract the
interest of researchers, particularly due to the fundamentally new properties of
agents’ behavior in comparison with a set of noninteracting agents. For example,
there is ongoing debate on the concept of value (utility) of a social network.

3For example, see the paper [86] by Granovetter and also the book [36] by Burt. In accordance
with Granovetter’s model, a social network represents an aggregate of strongly tied clusters
(groups) that are united into clusters with weak ties.
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The value of a social network is the potential availability of agents for “con-
nection” with another agent if necessary [88]. This value has a well-defined
numerical characterization. Consider the American market of phones dialing 911
only; actually, the buyers of such phones pay for potential emergency calls
(although they might never use this service). In this case, the potential connection to
a single agent has a value (the price paid for the phone). Hence, the potential
connection to very many agents must have an appreciably higher value.

D. Sarnoff, the founder of NBC, was among the pioneers of the value concept of
a social network. Sarnoff’s law states that the value of a broadcast network is
directly proportional to the number of viewers n.

Following the development of local computer networks, a father of Ethernet R.
Metcalfe established that the value of a telecommunications network is proportional
to the squared number of connected users n2, see Metcalfe’s law [195]. The
explanation seems simple: each agent in a network is connected to (n − 1) other
agents and the value of the network for this agent is proportional to (n − 1). The
network includes n agents totally, and its value is proportional to n (n − 1).

The appearance of Internet introduced corrections in social network evaluation.
D. Reed [179] acknowledged the above two laws but refined them by an additional
term associated with the subgroups of Internet users (Reed’s law). This term has the
form 2n − n − 1, being defined as the number of subsets (subgroups) in the set of
n agents except for singletons and the empty set. For each of the laws described,
apply a proportionality coefficient a, b and c to obtain the following expression for
the value of a social network with very many users n: a n + b n2 + c 2n.

The late 1990s were remarkable for the mass downfall of dot-com companies.
Subsequently, researchers suggested moderate estimates for the real growth of the
value of social networks. The work [31] animadverted on Metcalfe’s and Reed’s
laws and estimated the value growth by n ln(n). A major argument in support of this
law (known as Zipf’s law) is that, in contrast to the above three laws, the values of
connections are ranked. Consider an arbitrary agent in a social network of
n members; let this agent have connections with the other n − 1 agents of the values
from 1 to 1/(n − 1). For large n, the contribution of this agent in the value of the
whole network makes up 1þ 1

2 þ � � � þ 1
n�1 � lnðnÞ.

Summation over all agents shows that the value of the whole network is pro-
portional to n ln(n). However, this framework leads to a series of open questions.
For instance, why the values of connections have exactly the “uniform” distribution
among other agents? And so on.

All the laws mentioned (perhaps, except for Sarnoff’s law) are subjected to
criticism, and investigators have not still reached a common opinion. Apparently,
these debates will span a rather long period of time: it is difficult to formulate a
consistent rule explaining the phenomenon in the maximum level of generality
without focus on details.

There is another critical remark on the value laws of social net-works.
Obviously, the total value of two isolated social networks must coincide with the
sum of their values since additional value vanishes in the absence of connections
between them. But the laws under consideration do not satisfy such an additive
property.
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The value of a social network can be described in probabilistic terms with the
above additivity. As a characteristic that depends on the potential connections of all
agents, the value of a social network must be an increasing function of the number
of admissible configurations (potentialities) of these connections in the network.
Indeed, the phone market example illustrates that an increase in the number of
potentialities (in case of need) raises the value of a network. Denote by m 2 N the
number of such admissible configurations and by f : N ! R the value of a network,
where N and < are the sets of all natural and real numbers, respectively. Then the
monotone property (nonincreasing values for higher numbers of admissible con-
figurations) can be expressed in the form f(m1) � f(m2) for all m1 � m2.

Consider two isolated social networks, i.e., any agent from one network has no
connection to any agent from the other. Then the value of the union of these net-
works is the sum of their individual values. The number of admissible configura-
tions in the union of two networks is defined by the product m1m2, where m1 and m2

indicate the number of admissible configurations in the first and second networks,
respectively. So the value of isolated social networks satisfies the additive property:
f(m1 m2) = f(m1) + f(m2).

Imagine that there exists just a single configuration of connections among
agents. Then such a social network has zero value, since other potential connections
could not be set. Therefore, it is possible to introduce the normalization property:
f(1) = 0.

In probability theory [191], a function that satisfies these three properties is
proportional to ln(m), where m designates the number of configurations, and is
called entropy. Assume each configuration occurs equiprobably; then there exists a
prior uncertainty coinciding with the entropy ln(m) of the number of configurations.
Each concrete configuration eliminates the uncertainty of network connections.
Hence, the posterior entropy of each concrete configuration becomes equal to 0.
The whole essence of the value of a social network in this interpretation is the
degree of prior uncertainty elimination in the network. In other words, agents are
potentially available in the sense of the original definition of value.

Consider a network composed of n agents. Renumber all agents in the network.
Assume that a network configuration is completely defined by information spreading
among agents. For instance, agent 1 receives information from agent 2, agent 2
receives it from agent 3 and so on. Agent n receives information from agent 1. The
other configurations are the result of different permutations of agents in the initial
configuration. As easily demonstrated, there existm= n! such network configurations.
For a large number of agents n, Stirling’s approximation formula [59, 185], leads to
the following value of a social network (in the sense of entropy): ln(n!)� n ln(n) − n.

In comparison with Zipf’s law, this result corresponds to a more moderate
growth of network value proportionally to n ln(n).

As for practical implementations, today there exists a whole class of online
social networks united by the same technology Web 2.0 [170].

In accordance with O’Reilly’s definition, Web 2.0 is the network as platform,
spanning all connected devices; Web 2.0 applications are those that make the
most of the intrinsic advantages of that platform: delivering software as a
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continually-updated service that gets better the more people use it, consuming and
remixing data from multiple sources, including individual users, while providing
their own data and services in a form that allows remixing by others, creating
network effects through an “architecture of participation,” and going beyond the
page metaphor of Web 1.0 to deliver rich user experiences. So, Web 2.0 is
remarkable for the principle of users’ involvement in the filling and multiple
verification of content.

In this definition, like in the above-mentioned laws, a key factor is the interaction
of very many agents who increase the value of a social network (modern social
networks may cover tens of millions of users). Having this factor in mind, one
should employ the well-developed apparatus of statistical physics and information
theory to describe the behavior of large-scale systems in probabilistic terms.

Assume the behavior of an agent in a social network depends on several factors
(see Fig. 6), namely,

– the individual factor, i.e., the agent’s inclination (preferences) for certain
actions;

– the social factor, i.e., the agent’s interaction with other agents and their mutual
influence);

– the administrative factor, i.e., control actions applied by a Principal to the agent.

The agents subjected to some of the factors are called dependent on these factors.
If at least the social factor affects the agents, a corresponding network is termed a
nondegenerate social network. The agents subjected to none of the factors are
called independent. Finally, if the agents have no dependence on the social factor, a
corresponding social network is called degenerate [88].

Agent
Other 
agents

Principal

Social
factor

Administrative
factor

Individual
factor

Fig. 6 Factors affecting agent’s behavior in social network
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It is possible to draw analogies with models in thermodynamics and statistical
physics [185] as follows. A degenerate social network with independent agents
matches an ideal gas; a degenerate social network with dependent agents, a poly-
atomic gas. Next, a nondegenerate social network matches other substances with
existing interactions among particles (the mutual influence of agents). Finally, a
network with/without control actions matches the presence/absence of disturbances,
e.g., from an external field (the influence of a Principal).

There are the following correlations with information theory [197]. A degenerate
social network corresponds to message coding without penalization while a non-
degenerate one to message coding with penalization. Nonadditive penalties describe
the mutual interaction between agents; additive penalties, the influence of a
Principal. Such models were considered in Chap. 2 of the book [88].

Influence. Control. Confrontation. As mentioned above, online social net-
works have been intensively used as the objects and means of informational control
and an arena of informational confrontation. Therefore, all models that consider the
awareness of agents (i.e., their information at the moment of decision-making) are
traditionally divided into three nested classes—informational influence, informa-
tional control, and informational confrontation (see Fig. 7).

Informational influence models study the relationship between the behavior and
awareness of an agent (ergo, informational influences). An informational influence
model can be used to formulate and solve informational control problems: which
informational influences (applied by a control subject) will guarantee a required
behavior of a controlled subject. Finally, being able to solve informational control
problems, we may model informational confrontation—the interaction of several
subjects with noncoinciding interests that have informational influences on the
same controlled subject. As a matter of fact, informational influence models (or
social influence models in terms of sociology and social psychology) were thor-
oughly examined for more than 50 years. Meanwhile, the mathematical models of
informational control and informational confrontation in social networks (not to
mention these problems together, see Fig. 7) were underinvestigated.

Control

INFORMATIONAL

Influence

Confrontation

Fig. 7 Informational influ-
ence, control, and
confrontation
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Section 2.1 considers the informational influence of agents on their opinions in
social networks (generally speaking, the model below involves the traditional
framework of Markov chains for social network analysis, see [66, 98] and also
[180]). The structure of a social network is described using the concepts of com-
munity (a set of agents that undergo no influence from other agents outside it),
group (a community of agents in which each agent has influence on or undergoes
influence from each other agent of this community, directly or indirectly), and
satellite (an agent that has no influence on any group). Assume at least one agent in
each group more or less trusts in his/her opinion. Then it turns out that, in the final
analysis, the opinions of all satellites are defined by the opinion of groups; more-
over, the opinions of agents within groups converge to the same value. (General
necessary and/or sufficient conditions of convergence—the regularity of Markov
chains, etc.—can be found in [70, 76, 112] while the communication structure of
agents, including its role in convergence, was considered in [3].) For such social
networks, the following statement of informational control problems seems quite
natural: for a small set of key agents in a given network, find variations of their
opinions, reputation and/or trust so that the resulting opinion dynamics yield
required opinions for all members of the network or its part. Some informational
control models are described in Sects. 2.2–2.6.

Recall that we have identified three components of social network models—
opinion, trust, and reputation (see Fig. 1). Control is a purposeful influence on a
controlled system in order to guarantee a required behavior [165]. So the object of
control in a social network can be the opinions of agents, their reputation and
mutual trust. Informational control models for agents’ opinions are considered in
Sects. 2.2 and 2.3; informational control models for agents’ reputation, in Sect. 2.4;
informational control models for agents’ trust, in Sects. 2.4 and 2.5; an informa-
tional control model with the incomplete awareness of a Principal, in Sect. 2.6.
Next, Sect. 2.7 introduces a model of actions spreading through a social network
and also an associated influence calculation method. This model estimates the
influence and influence levels of different agents based on existing observations of
real social networks, which can be further used in opinion formation models.

In addition, we state and analyze the associated game-theoretic problem of
informational confrontation among several players in a social network (see Sects. 3.1
and 3.2). Two cases can be separated out as follows. If several players choose their
informational influences simultaneously, then their interaction is well described by
a normal form game (see Sects. 2.2 and 3.1). The case with a fixed sequence of
moves leads to an attack-defense game, which is considered in Sect. 3.2.

Section 3.3 presents another approach to the game-theoretic modeling of infor-
mational confrontation that is superstructured over threshold models of mob. Such
models describe a mob as a set of agents with the so-called conformity behavior:
their binary choice (to be active or passive) depends on the decisions of other agents.
In this context, we also refer to a survey of threshold models in Chap. 1.

Safety. Besides the discussed capabilities, like any large social phenomenon
online social networks cause a series of problems for users: diversion from the
reality; a lack of live communication; much time spent on communication, in
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particular with unfamiliar people (which might affect study, work, and personal
life); and so on. Still these problems have not reached an adequate level of
formalization, and they will be omitted in the book.

As emphasized earlier, social networks can be a tool of informational control
(manipulation, implicit control), which inevitably leads to a dual problem—the
analysis and control of informational safety of social networks.

Another well-known fact is that information systems have become an integral
support and implementation tool for managerial decisions at all levels—from
operators of industrial processes to country leaders. Therefore, informational safety
might (and should) be supplemented by the social safety of information and
communication technologies (ICT), i.e., the safety of ICT users, their groups and
the whole society from informational influences and the negative consequences of
managerial decisions based on modern ICT.

Consequently, it is important to examine the issues of informational influence,
informational control and informational confrontation, in particular in the following
aspects:

• informational influence on separate persons, social and other groups, and the
whole society;

• purposeful influence (informational control), including such influence through
mass media;

• struggle for high informational influence levels and formation of required
opinions in a society;

• the safety of managerial decisions depending on available information;
• informational confrontation (including implicit confrontation) at international,

national, regional, municipal, sectoral, and corporate levels.

Some safety control models for social networks will be considered in this book.
However, this field has not attracted proper attention of researchers, and the design
and analysis of social safety models for ICT (including safety models of social
networks) seems to be a topical branch of future investigations.

Structure of This Book. The Introduction considers in brief game-theoretic
models as a formal description for interacting elements of network structures.
Chapter 1 gives an analytic survey of informational influence models for social
networks. Next, Chap. 2 presents original results of the authors and their colleagues
on the design and analysis of theoretical models of informational influence and
control in social networks. Chapter 3 is dedicated to original theoretical models of
informational confrontation in social networks. At the end of each section in Chaps.
2 and 3, we outline some promising fields of further research, which explains the
absence of conclusions in this book.

Moscow, Russia Alexander G. Chkhartishvili
October 2018 Dmitry A. Gubanov

Dmitry A. Novikov
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Introduction: Games and Networks

Throughout many years, game- and graph-theoretic models have been successfully
used to describe complex systems. This book is dedicated to models of social
networks formalized by graphs while the problems of informational control and
informational confrontation are stated, particularly, in terms of game theory. For a
proper characterization of this class of models, consider in brief the modern
correlations of game- and graph-theoretic models.

In accordance with [153], game theory studies mathematical models of conflict
and cooperation among rational subjects (players) that make decisions. The results
obtained in game theory have found numerous applications in different fields—
sociology [180, 194], economics [144, 151, 153], organizational control [80, 165],
ecology [35, 180], military science [207], etc.

As a theoretical discipline, graph theory is a branch of applied mathematics that
analyzes the properties of finite sets with given relations among their elements. In
the sense of applications, graph theory allows describing and exploring many
technical, economic, biological and social systems; a series of examples were
discussed in [112, 180, 207].

Graphs and Games. As a matter of fact, game theory and graph theory possess
a strong correlation. Some examples where the framework and results of graph
theory are adopted in game-theoretic setups include the following:

– a tree graph defines the structure of decision-making in an extensive-form game
[153];

– a graph (with nodes as players) determines the structure of admissible coalitions
[80];

– a graph models a “search game” in discrete time (here nodes are the positions of
players and edges correspond to admissible transitions) [69];

– a directed graph describes how the payoff functions of certain agents depend on
the actions of other agents (e.g., Nash equilibrium can be achieved on connected
graphs); in the general case, a graph reflects the awareness structure of players
[168] or the structure of communications among players [162];
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– a graph characterizes permanent or temporal relations (informational or tech-
nological relations, subordinacy relations, etc.) among players [79, 162];

… and so on.
Moreover, we should mention theory of network games, a relatively young

branch of game theory dating back to the late 1970s. It focuses on the formation of
network structures—stable relations among players—under their noncoinciding
interests and/or different awareness (see the survey [77] and the monograph [112]).

In this context, two terminological remarks are needed as follows. First, in
network games the term “network” has a wider meaning than in graph theory, as
almost any graph is called a network. Second, along with the term “network
games,” a growing number of authors operate the term “network formation games.”
Actually, it better fits the whole essence of a game that produces a network con-
necting players. This trend allows for a simple explanation: network games can be
treated as network formation games (see Fig. 8) and as network-based games with
fixed-structure networks. Next, the network-based games comprise the following
classes (see Fig. 8):

NETWORK
GAMES

NETWORK 
FORMATION GAMES

NETWORK-BASED 
GAMES

networking games

cognitive map games

social network games

network schedule games

Network is the result of 
game interaction

Network is fixed and describes how 
the results of players' activity and/or 

payoffs depend on their actions

Fig. 8 Network games
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– networking games4;
– cognitive map games;
– social network games;
– network schedule games.5

At qualitative level, the distinction between network formation games and
network-based games is that, in the former, players choose variables connected with
paired interaction among them; in the latter, players choose variables describing
network nodes (e.g., factor values in cognitive map games, agents’ opinions in
social network games, etc.). Perhaps, a formal unification of these models will be
reasonable for future investigations, see dashed line in Fig. 8. A potential benefit
from such an initiative is that many network formation games (e.g., information
communication models in multiagent systems) require a model of network
dynamics for payoff evaluation, similarly to network-based games. The unification
of these models would lead to a two-step game in which players form a network
(Step 1) and use this network to transmit information, resources, etc. (Step 2) in
accordance with the concept of network-based games.

Network-Based Games. Recent years have been remarkable for the appearance
of different practical setups for the description and analysis of an agents’ interaction
in which the result of interaction (or the relationship between chosen
actions/strategies and payoffs) is defined by a certain network (graph-theoretic)
model. As emphasized above, such games are called network-based games.
Consider a series of examples.

Cognitive map games [158] involve cognitive maps [9], i.e., weighted directed
graphs in which nodes are factors (evaluated via a continuous scale or a fuzzy scale)
and weighted or functional arcs reflect the mutual influence of factors. Such games
are used for taking into account the causal relations and mutual influence of factors
as well as for the dynamic modeling of weakly formalizable systems [126].
Cognitive models have various applications, see [9, 180]. For an introduction to this
field of research, we recommend the classical monographs [9, 180].

The main objective of using cognitive maps consists in qualitative analysis,
mostly relying on simulation modeling of situation dynamics (trends, directions of
factors variation, scenarios, etc.). In other cases, qualitative analysis is used for
solving inverse control problems in analytic form. For example, by describing the
correlation of factors as a system of second-order linear differential equations and
specifying some initial conditions, one can analyze the dynamics of factors,
steady-state values and so on. Therefore, it is possible to consider all these aspects

4This class of games mostly has transportation and telecommunications interpretations (see the
monograph [184], the pioneering paper [209] and also the survey [64]). Here network is a tool
and/restriction for players’ interaction.
5 Unfortunately, still researchers have not paid due regard to this class of games. It can be
characterized as games of subjects allocating certain resources to implement operations within the
network schedule of a project. In other words, network schedule games are a game-theoretic
generalization of resource allocation problems defined over networks; these problems represent
classical examples in network planning, scheduling and control.
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from the viewpoint of persons interested in certain situation development or to
explore the noncoincidence of goals pursued by different subjects. A correlation
model of factors being available, a game-theoretic setup can be considered as
follows. Assume players can influence the initial values of factors (e.g., for each
player there is a given set of controlled factors) and their payoffs depend on the
steady-state values of factors. An example of such a linear game was examined
in [158].

In social network games, nodes are agents (i.e., the members of a social network)
and weighted arcs reflect their degrees (levels) of mutual trust (influence), see the
monograph [112] and Chap. 2 of this book. The opinion of each agent is formed
under the influence of his/her initial opinion and the opinions of other agents
depending on their mutual trust (the opinions dynamics obey a system of linear
differential or difference equations). In addition to agents, the model includes
players which can influence the former, including their interaction. This means that
the players are able to control agents. With a known relationship between the initial
opinions and the structure of a social network (on the one part) and the final
opinions (on the other part), it is possible to rigorously formulate and solve the
following problem. Which initial opinions of agents and relations among them
(including the structure and the degrees of trust) should be formed by the players for
reaching an equilibrium of the game in some sense? Note that this book is dedicated
to social network games in accordance with the above-mentioned correlation of the
game- and graph-theoretic models.

Among other examples, we mention the usage of Petri nets [218].
All examples above (generally speaking, all network-based games) have a

common feature as follows. The connection between the players’ actions and the
result that defines their payoffs is described by a dynamic system, a system of
differential equations, etc. within a rather simple network. To put it bluntly, a
network represents the model of players’ interaction (factors’ interaction, etc.). The
next step is to analyze the properties of a corresponding dynamic system, which
leads to some classical game-theoretic setup (in the general case, a dynamic game
[158, 216]). Interestingly, networking games stand aside: they have almost no
dynamics and the solution is Wardrop equilibrium [209].

Furthermore, consider a network as a control object. Studying the properties of
this network, being able to describe its dynamics depending on certain parameters
and extracting controlled variables (the parameters varied by a Principal), we can
pose and solve different control problems. This point should be elucidated.

Control Problem. This paragraph presents a qualitative general statement for
the control problem in a certain system. Consider a control subject (Principal) and a
controlled system (controlled object). The state of the controlled system depends on
external disturbances, the control actions of the Principal and possibly on the
actions of the controlled system itself (this is the case for active controlled objects—
subjects—arising in socioeconomic or organizational systems, see Fig. 9). The
Principal’s problem is to perform control actions (solid line in Fig. 9) for ensuring a
required state of the controlled system under existing information about external
disturbances (dashed line in Fig. 9).
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A controlled system can be described in different ways (e.g., a system of
differential equations, a set of logical rules, etc.), which reflect the dependence of its
states on external factors, control actions, past states, and so on. In particular, a
formal description may involve a network model; for example, Fig. 10 shows a
network in which nodes correspond to the components of the state vector (agents,
system participants) while arcs characterize their mutual influence.

The book [165] suggested a classification of control problems depending on the
object affected by control actions, which identified the following types of control:

– staff control (control of elements belonging to the staff of a controlled system);
– structure control (control of connections among system elements);
– institutional control (control of the constraints and norms of activity for system

elements);
– motivational control (control of preferences and goals);
– informational control (control of the awareness of system elements, i.e., control

of all information available to them at the moment of decision-making).

In its network interpretation where a controlled object is a graph (composed of
passive nodes without individual preferences and awareness), control actions are
purposeful influences on the following components of a controlled object
(see Fig. 11):

CONTROL SUBJECT
(PRINCIPAL)

CONTROLLED SYSTEM
(CONTROLLED OBJECT)

State of
controlled

system
Control action

External disturbances

Fig. 9 Structure of control
system

Network

Agents/factorsFig. 10 Network as model of
controlled object
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– the staff of a controlled system (i.e., control consists in elimination or addition of
nodes);

– the structure of a controlled system (i.e., control consists in elimination or
addition of arcs);

– the values of parameters corresponding to graph nodes (the values of states) and
its arcs (the values of parameters reflecting the connections among system
elements).

As for the social networks considered in this book, most of the modern control
models describe an influence on graph parameters, almost not affecting the staff and
structure of a given network. Therefore, control problems for the staff and structure
of social networks are an interesting field of future investigations, both in terms
of their statement and solution methods.

Note that control of a network is an independent nontrivial problem which may
employ the framework of operations research and optimal control theory.
Furthermore, a separate issue concerns stability, either the Lyapunov stability of a
controlled system, or the stability of solutions with respect to model parameters
(the well-posedness of a control problem, etc.) [200].

Now, complicate the model by assuming that there are, at least, two Principals.
Each of these players can apply control actions to some components of a controlled
object, as illustrated in Fig. 12.

If the preferences of players (their “efficiency criteria” or goal functions) depend
on the state of a controlled object (in the general case, the latter is defined by the
actions of all players), we naturally obtain a network-based game defined above.

Assume the set of players, the sets of their admissible strategies, goal functions
(defined over the set of actions and network states) and the network itself (with all
its properties, including the relationship between players’ actions and network
states), the awareness of players and their decision-making form common

Principal

Network (controlled object)

Control actions

Fig. 11 Control of object
described by network
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knowledge among all players.6 A set of the above parameters determines a dynamic
game (see the surveys in [207, 216, 153]). This means that, in the case under
consideration, a network-based game can be reduced to a dynamic game.

An exploration of network-based games includes the following stages:

(1) the description of a given network, including dynamics analysis;
(2) the description of the set of players, their preferences, awareness structures, the

sets of admissible strategies and controlled parameters;
(3) the reduction of a given network-based game to some game-theoretic model

(extensive- or normal-form game, cooperative game, etc.).

This stage exhausts the network specifics, passing on the baton to classical
game-theoretic analysis. Of course, the results of such an analysis should be given
some interpretation in network terms. In other words, the problem is to transform an
initial network-based game into an appropriate game for using a rich arsenal of
game-theoretic methods.

The whole variety of network models and games defined over them needs a
suitable classification system. It is possible to suggest two almost independent
classification systems—from the viewpoint of games and also from the viewpoint
of networks over which these games are defined.

Classification of Network-Based Games. First, we will classify network-based
games from the viewpoint of game theory, specifying classification bases and
admissible values of classification attributes.7

Players …

Network

Game

Control actions

Fig. 12 Network-based game
(confrontation)

6In other words, the listed parameters are known to each player, each player is aware of this fact,
each player knows that the other players are aware of this fact, and so on—generally speaking, the
process of such reasoning is infinite [168]. If this assumption is rejected, reflexive network-based
games have to be considered.
7For each classification basis, it is possible to distinguish a greater number of subclasses (the
number of values of classification attributes). An alternative approach widens the circle of
classification bases by importing them from optimal control theory, operations research, etc.

Introduction: Games and Networks xxvii



1. The type of a dynamic system (for network models with dynamics). For this
classification basis, we may discriminate between linear games (in which the
variations of node values depend linearly on the values of other nodes, their
variations and control actions) and nonlinear games.

2. The awareness of players. Here the admissible values of classification attributes
are as follows: (a) the parameters and current results of a game form common
knowledge; (b) common knowledge is absent. In the latter case, we have
reflexive network-based games (see the description of reflexive normal-form
games in [168]). This class of games can be an efficient tool to model infor-
mational confrontation, information warfare, etc. [126, 168]. The asymmetric
awareness of players may take place depending on the parameters observed
by them.

3. The presence or absence of uncertainty (symmetric uncertainty or asymmetric
uncertainty when players possess different prior information and this fact forms
common knowledge). The deterministic case seems simpler; at the same time,
e.g., network-based games (symmetric) uncertainty well describe situations of
decision-making and/or scenario modeling in uncertain conditions.

4. Discrete or continuous time. If node values depend only on the actions of
corresponding players, we obtain classical differential games. They represent an
intensively developed and fruitful branch of modern game theory, see [216] and
also bibliography therein.

5. The structure of players’ goal functions. The goal function of each player
possibly depends on the dynamics demonstrated by the values of all nodes
(trajectories) and his/her actions. In the general case, the payoff of each player
is explicitly defined by the actions of all players. There may exist integral
criteria that describe the player’s payoff using a time integral of some function
of the game trajectory and players’ actions (e.g., with normalization by game
duration—average criteria). In terminal criteria, the payoffs of different
players depend on the node values at terminal times. Note a specific set of
terminal nodes (goals) can be defined for each player, and so on.

6. Time horizon, for analyzing dynamics and solving associated control problems.
We will differentiate between finite and infinite horizons.

7. The structure of constraints. Certain constraints can be imposed on the
individual actions of players only. We also mention joint activity constraints
[162, 165], and/or individual constraints in constructive form (e.g., bounded
time integrals of given functions of players’ actions).

8. The foresight of players. In the conditions of complete awareness and common
knowledge on a finite horizon, players may simultaneously choose their actions
for all future times (the so-called programmed decision-making). The foresight
of players, i.e., the number of future times considered by them, can be smaller
than the time horizon. In this case, sliding decision-making is required in which
players may undertake certain commitments on the choice of their actions.

9. The times of action choice for players. Several situations are possible as
follows. First, the so-called impulse control in which the actions of players
explicitly affect the values of nodes at a single time (e.g., the initial time) or
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several starting times, with subsequent relaxation dynamics. Control can be
continuous, i.e., the actions of players explicitly affect the values of nodes at
each time. Finally, control can be periodic.8

10. The sets of nodes controlled by different players. In the general case, the value
of each node in a dynamic game evolves depending on the actions of all
players. In special cases, there may exist specific sets of controlled nodes for
certain players. The sets of controlled nodes can be overlapping or not.

11. The sequence of moves. Players can make decisions simultaneously. The
sequence of moves (choice of actions) may differ during a single period, which
leads to multi-step hierarchical games [71] (two players) or multi-step multi-
level hierarchical games (three or more players). Alternatively, different
players can choose their actions at different times—an analog of extensive-form
games or positional games.

12. Coalition formation. Making their decisions, players may exchange informa-
tion, negotiate joint actions and redistribute their payoffs. This leads to a
cooperative game.

The second system of classification bases for network structures can be
described from the viewpoint of graph theory. More specifically, network
structures may involve [158]:

– functional graphs (in which the influence of one node on another is a given
function of their values);

– delayed graphs (in which any variations in the value of one node cause varia-
tions in the value of another with some delay);

– modulated graphs (in which the influence of one node on another depends on
the value of a third node called a modulated node);

– hierarchical graphs;
– probabilistic graphs (in which each arc describes an influence realized with a

given probability);
– fuzzy graphs, etc. Different interpretations of nodes, arcs and their weights as

well as different functions determining a mutual influence of nodes generate a
variety of network models.

Intermediate Conclusions. Combining different values of attributes for each
classification basis above and choosing a certain type of network structure, we can
define several types of network-based games and also assign an appropriate class
for a specific network-based game.9

The existing classification system allows us to generate adjacent problems using
the results of investigations for a certain network-based game as well as to extend
and/or generalize well-known results to them.

8Of course, each player may have a specific sequence of decision-making times at which his/her
actions explicitly affect the values of certain nodes.
9We recommend the reader to get back to this classification after perusal of the book, which would
outline the place of all models considered below.
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The current advances in the field of network-based games—a correct reduction
of some network-based games to classical normal-form games [94, 158] or reflexive
games [168]—seem to be very modest. From a theoretical perspective, further
research should be focused on the study and applications of the models of
network-based games that have been classified above, namely, nonlinear, reflexive,
hierarchical and cooperative models of qualitative decision-making (defined over
fuzzy and/or probabilistic and/or functional graphs) in uncertain conditions, etc.
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Chapter 1
Models of Influence in Social Networks

In this chapter presents an analytic survey of modern models of social networks as
well as establishes a correspondence between different classes of models and the
properties of social networks reflected by them (see the Preface). Further exposition
is organized as follows.

Section 1.1 (Influence and influence level) includes four subsections. The first
subsection considers the existing definitions and models of influence in social
networks and also the formal approaches to determine the influence levels of agents.
Next, the second subsection deals with the models of diffusion of innovations. The
third subsection is dedicated to opinion formation models for social networks.
Finally, the fourth subsection discusses models of influence and information
spreading.

Section 1.2 (Common knowledge. Collective actions) has the following struc-
ture. The first subsection studies the role of awareness. The second subsection is
focused on public goods and specialization. The third subsection describes com-
munication and coordination in social networks. The fourth subsection considers
social control and collective actions as well as network stability.

Section 1.3 (Models and properties of social networks) summarizes this analytic
survey and establishes a correspondence between the properties of social networks
reflected by certain models.

1.1 Influence and Influence Level

1.1.1 Influence. Classification of Models

Influence is the process during which a certain subject (the subject of influence)
changes the behavior of another subject (an individual or collective object of
influence), his/her attitude, intentions, beliefs and assessments (and also the
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resulting actions) using interaction with him/her, as well as the result of this process
[73]. Influence is the capacity to have an effect on the character, development, or
behavior of someone or something, or the effect itself [174]. There exist purposeful
and purposeless influence [73]. A purposeful (goal-oriented) influence is an influ-
ence that involves such impact mechanisms as persuasion and suggestion. In
addition, the subject of influence seeks for definite results (goals, e.g., specific
actions) from the object of influence. A purposeless (goal-free) influence is an
influence in which an individual does not need definite results from the object of
influence (in some cases, the former does not even suspect the existence of the
latter). In this book, we will discuss influence together with the concept of influence
level, which is the total influence on a given community (network).

As indicated by psychological studies [54], agents in a social network often have
insufficient information for decision-making or are unable to process it indepen-
dently. Therefore, their decisions can be based on the observed decisions or beliefs
of other agents (social influence). Social influence is realized over two processes—
communication (contacts, the exchange of experience and information, discussion
of certain issues with authority neighbors leads a given agent to certain beliefs,
attitude, and opinions) and comparison (in pursuit of social identity and social
approval, an agent accepts beliefs and actions expected from him/her by other
agents in a given situation). During the second process mentioned, an agent
wonders, “What would be done by another agent (role model) in my situation?” So,
comparing him/herself with this agent, the former assesses his/her own adequacy
and plays a corresponding role. Comparison can be also explained by the aspiration
for strategic advantage: contrasting him/herself with other agents that have the same
positions in a social system, a given agent may introduce or accept innovations for
becoming a more attractive object of relations. Note that the communicative
approach to influence may lead the agents to the same beliefs but not necessarily to
the same behavior. In the case of comparison, however, an agent indirectly copies
the actions of other agents. Clearly, the behavior of a given agent is determined by
his/her beliefs but also by the limitations he/she is facing. So agents with similar
beliefs may behave differently; conversely, agents with different beliefs may act in
the same way. In social networks, a visual relationship between the actions of
neighbor agents can be defined by social pressure (an action or opinion of a given
agent may stimulate other agents to follow him/her) and to a greater extent by other
factors of social correlation—external environment (same place of residence, same
occupation, etc.) or the similarity of agents (e.g., close preferences or tastes).
Nevertheless, it is possible to detect an existing influence in a network due to its
causal character. In particular, the paper [143] considered tests to identify the social
influence factor.

A social network plays crucial role in the spread of information, ideas, and
influence among its members. A major issue of informational processes analysis in
social networks is to evaluate the influence of different users (some problems
associated with networks were discussed in [90]). In fact, there exist several
approaches to define the influence and influence level of users as follows. The
structural approach to modeling and influence evaluation operates the concept of

2 1 Models of Influence in Social Networks



structural centrality from the classical theory of social network analysis (SNA) [6,
62, 198, 210]. Since the 1950s, scientists have been developing different structural
centrality indexes (node closeness, node betweenness, edge betweenness and others,
see [65]) to describe influence. However, informational interaction within a social
network is not always caused by its structure (e.g., see [89]), which forms a con-
siderable drawback of this approach. Also note numerous studies of influence
indexes (the Banzhaf power index, the Hoede–Bakker index, etc. [5, 63, 84, 104,
186]) in decision making. The dynamic modeling approach relies on a certain model
of different informational processes in social networks. As assumed here, influence
predetermines the dynamics of informational processes (opinions formation, infor-
mation spreading, etc.). In this context, we mention Markovian models, threshold
models, independent cascade models, Ising models, cellular automata models, epi-
demic models and others. This approach is used for solving different optimization
problems, particularly, the problem of most influential users (in the general case, the
problem of a finite set of most influential users) indirectly causing a maximum
spread of given information through a social network [124]. The approach based on
actions and interests (the actional model, see Sect. 2.7 of the book) proceeds from
the actions performed by social network users (writing posts, comments, etc.) and
formalized interests of a control subject (Principal). Finally, the computational
approach evaluates influence using modified page ranking algorithms and sciento-
metric methods [4] or machine learning methods [178].

In the sequel, we will study dynamic models of informational processes over a
fixed network with local interaction rules of its members (interpersonal influence).
Less attention will be paid to dynamic models of informational processes with
macrolevel variables (e.g., see the macromodels of epidemics in the survey [155] or
social communication models in [146, 177]).

Classification of influence models for social networks. We have thoroughly
analyzed the literature to identify the following general classes of models.

Optimization and simulation models, which include several subclasses con-
sidered in Sect. 1.1, namely,

1:1. the models of diffusion of innovations;
1:2. the models of opinions formation;
1:3. the models of influence and information spreading.

Models 1.1–1.3 (described further in Sect. 1.1) mostly deal with the interaction
rules of agents, covering merely a few aspects of the influence network and its
properties as well as the relationship between its structure and interaction processes.

Game-theoretic models, which stress main emphasis on the awareness and
interconnections of players (agents). The payoff of a given agent (player) depends
on the actions of his/her opponents (other players). Each agent seeks to maximize
his/her payoff. A series of game-theoretic models will be considered below (in
Sect. 1.2 and Chap. 3 of this book), including:
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2:1. the models of mutual awareness;
2:2. the models of coordinated collective actions (and public goods);
2:3. the models of communication processes and the problems of minimal suffi-

cient network;
2:4. the models of network stability;
2:5. the models of informational influence and control;
2:6. the models of informational confrontation.

Now, we will describe these classes of models in detail.

1.1.2 Influence and Diffusion of Innovations

In the literature dedicated to social networks, influence has close connection to the
concept of diffusion of innovations [182]. So we will discuss in brief the corre-
sponding models of diffusion of innovations.

The properties of large-scale systems were considered in [156, 211]. The
dynamics of innovations spreading (the share of a population that accepts inno-
vations) is traditionally modeled by the S-shaped curve, also known as the logistic
function. Actually, this is a characteristic of any infectious process [212], learning
process [166], diffusion of innovations [182], see Fig. 1.1. The S-curve has the
following stages [72]: innovators (who accept and use an innovation “in the
forefront”), early adopters (who perceive an innovation and start using it soon after
appearance), early majority (who perceive an innovation after innovators and early
adopters before the majority of other agents), late majority (who perceive an
innovation after widespread use), and late adopters (who perceive an innovation
after all the others). These groups are illustrated in Fig. 1.2 in form of the so-called
Bell curve—the derivative of the S-curve.

Like many other processes in nature and society, the diffusion of innovations has
certain limits, in the first place due to finite resources (the bounded capabilities and
capacity of a social system). The S-curve contains three phase of development—
base formation (slow growth), abrupt growth, and saturation (slow growth). A key

Fig. 1.1 S-curve (logistic function)
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factor that determines the speed of diffusion processes is the interpersonal com-
munication among the adopters of a given innovation and those who is hesitating or
knows nothing about it.

Whereas innovators can be characterized as non-conformists (or even originals)
and early adopters as the agents susceptible to the social normative and informa-
tional influence (or having good sense for promising things), late adopters are
difficult to affect and stable agents of a social network. The adoption stages of
innovations for different agents were considered in [182].

Very often small variations in the states of network nodes may cause cascade
(avalanche-like) changes (local—covering the initiator’s neighborhood—and glo-
bal—over the whole network). TheWord-of-Mouth effects were empirically studied
in [74, 135], yet without a detailed structural analysis of networks. The papers [121,
133] examined the interconnection between network structure and group coordi-
nation problems but for artificially generated networks. So it is not clear how these
results apply to real social networks.

Diffusion of innovations: models of public opinion formation. In such
models, public opinion is an innovation. As a matter of fact, this class includes
many models. For example, there exist models considering agents as separated
objects of influence by mass media [21]. Here the two-step model [120] is widely
used, in which mass media first form the opinions of the so-called leaders (the
agents with good awareness, high respect or many links) and then leaders do the
same for other (common) agents. But the grounds of such a heuristically clear
approach seem doubtful. Are the leaders really affecting the whole community
through their closest neighborhood? Is their influence crucial? This model also
neglects reciprocity: common agents also affect the leaders, and influence can be
transferred in more than two steps. Moreover, many mathematical models (e.g., see
[10, 55, 56, 87, 193, 217]) do not explicitly assume the presence of opinion leaders
or special individuals to obtain the S-curve of diffusion of innovations.

Diffusion of innovations: role of leaders. The paper [212] identified the role of
leaders in the diffusion of innovations within a simple model of social influence
(particularly, how the dynamics of their opinions cause large cascade changes of

Innovators Early 
adopters

Early 
majority

Late 
majority

Later
adopters

Fig. 1.2 Bell curve
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opinions in a social network). As established there, in most cases leaders have a
moderately higher significance than common agents (with some exceptions).
Actually, large cascades are generated by the mutual impact of different easily
influenced groups of agents.

We will explain this conclusion below. Consider the linear threshold model
[212] in which agent i makes binary decision on some issue. The probability that
agent i prefers option CB to option CA is increasing with the number of other agents
who choose CB. (This fact is well-known in social psychology, although the
threshold model does not cover several factors, e.g., reactive resistance [152]). The
threshold rule has the form

P½choose CB� ¼ 1 if ri �/i;
0 if ri\/i;

�

where /i denotes a threshold; ri is the share of agents choosing CB. Note that the
model can be extended using another probability with higher sensitivity to varia-
tions of the share ri.

In addition to the threshold rule that determines the influence of other agents on
the decisions of a given agent, the model should include information about the
influence network (mutual influence of different agents). As assumed in [212],
agent i within a population of size n influences ni other randomly chosen agents.
The number ni is taken from the influence distribution p(n) with the mean navg � n,
which characterizes the influence of agent i on ni other agents subject to the given
issue. In this influence network, all agents may affect each other (directly or indi-
rectly). The authors [212] defined opinion leaders as the agents located at the upper
decile of the opinion distribution p(n).

Opinion dynamics were also considered in [212] as follows. At the initial step,
the agents are passive (in state 0) except for a single randomly chosen active
initiator i (opinion leader) who is in state 1. This initiator can activate the neigh-
bors, thereby generating a cascade in a chain. Assume a large number of early
adopters (the agents directly connected with the initiator in the network) are also
connected with each other. Then a global cascade may occur, although in general
such adopters may constitute a small part of the population. A series of experiments
was performed in [212] for comparing the average size of a cascade initiated by the
opinion leader with the average size of a cascade initiated by a common agent.

Note that the average threshold / equally affects the cascade initiation capability
of the opinion leader and a common agent. So a relative comparison of their
significance is independent of /. The size of cascades generated by single initiators
strongly depends on the average density navg of the network in the following way. If
this value is small, then many agents are susceptible but the network has insufficient
density for spreading and merely a small part of the network is activated in final
analysis. For large navg, the network becomes highly connected but for activation
the agents need a large number of activated neighbors; in other words, a few
initiators cannot generate a global cascade. In fact, global cascades may occur on
the medium interval—the so-called cascade window. Within this interval, leaders
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and common agents may initiate cascades. Consequently, the cascade initiation
capability of an agent depends on the global structure of the network rather than on
his/her individual degree of influence. If cascades are possible in principle for a
given network, then any agent can initiate them; otherwise, nobody. This result
holds regardless of the value /, which merely “shifts” the cascade window for the
leaders and common agents.

As indicated by experiments [212], leaders initiate cascades that are slightly
larger than the ones initiated by common agents (their sizes almost coincide),
except for narrow limits of the cascade within which the former have considerably
higher significance than the latter. On the other hand, leaders may play key role in
initiating global cascades as the critical mass of early adopters. If the network has
low density (navg is near the left limit of the cascade window), then early adopters
are more influential in average (i.e., ni > navg). For the network with high density
(navg near the right limit of the cascade window), we observe the opposite picture—
early adopters are less influential in average (ni < navg). This phenomenon can be
explained in the following way. The agents with high influence (a large value ni) are
less susceptible but, after passing to state 1, they can activate more other agents.
However, in accordance with experimental evidence, early adopters are not opinion
leaders despite their higher influence against average agents. In other words, early
adopters are not always influential enough for generating global cascades [212].

Different modifications of the original model [212] with different assumptions
about the interpersonal influence and structure of the influence network yield dif-
ferent opinion dynamics but the general conclusions remain almost the same.

Networks of group structure. Real networks have a definite local structure.
The authors [212] introduced a simple local structure in which acquaintances
(friends) considerably influence each other and agents have multiple (often over-
lapping) groups of acquaintances. A population of n agents is partitioned into
m groups of size g. In average each group is randomly connected with mavg other
groups. Each agent from group i is connected with each other agent from this group
with some probability p and also with each other agent from mi neighbor groups
with some probability q. Two network structures are analyzed, integrated
(p = q) and concentrated (in each group an agent has at least the same number of
internal and external connections). As it turned out, such networks have a wider
cascade window than the random networks considered earlier. However, group
structure reduces the significance of opinion leaders, except for integrated networks
corresponding to the left limit of the cascade window (the networks of low density).
The same takes place for the role of early adopters: in sparse networks, of major
importance are more influential adopters, and vice versa. Still these early adopters
are not opinion leaders.

Change of influence rule. The assumption that many active neighbors are
required for activating a leader seems rather reasonable. At the same time, it is
interesting to study the setup in which leaders can be easily influenced like common
agents. The paper [212] considered the Susceptible–Infected–Removed (SIR) model
[103], a canonical model in which in each interaction an agent becomes active (in
the terminology of epidemic models, infected) with some probability b and inactive
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(recovers) with some rate c per unit time. In other words, most influential agents are
easily influenced. In this case, the cascade window has no upper limit: the higher is
network density (i.e., the susceptibility of all (!) agents also increases), the larger
cascades occur. The general conclusions remain the same: as before, the cascades
initiated by leaders are larger than the ones initiated by common agents, but without
considerable difference. In average, the early adopters connected with initiators
have higher influence than common agents; still, they are not opinion leaders.

1.1.3 Opinion Formation

In accordance with the definition of social influence, a given subject affects another
subject in a social medium, changing his/her opinions (as well as emotions and
behavior). This section describes in brief the existing publications on opinions
dynamics in social networks using the mutual influence of agents.

In the first place, the fundamental research in this field is focused on the coor-
dination models of agents’ opinions (reaching consensus) in which the interaction
of network members (social agents) gradually diminish the differences between
their opinions. This phenomenon is explained by social psychologists using several
factors such as conformity, acceptance of evidence (persuasion), incomplete
awareness, self-distrust, etc.

The classical formal models of opinion dynamics (see [51, 66, 98] and also the
surveys in [112, 180] as well as the opinion dynamics models in [33] and Sect. 2.1
of this book) consider sequential averaging for the continuous opinions of agents in
discrete time. There exist different modifications of such models in which averaging
runs in continuous time [1, 8], the opinions are measured in ordinal or even nominal
scale, and so on. We will discuss a slightly varied example of the classical model
(further referred to as the French–Harary–DeGroot model), which describes the
dynamics of reaching consensus in a network structure. In this structure, at each
step the nodes from the set N ¼ 1; . . .; nf g form their opinions as the weighted sum
of the opinions of their neighbors and their own opinions at the preceding step. That
is,

x tþ 1ð Þ
i ¼

X
j2N

aijx
tð Þ
j ; t� 0;

where x 0ð Þ
i denotes the opinion of agent i at some initial step; the parameter aij 2

0; 1½ � reflects the influence level of agent j on agent i
P

j aij ¼ 1
� �

.
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The opinion dynamics can be written in the matrix form

x tþ 1ð Þ ¼ Ax tð Þ;

where A means the influence matrix, which is stochastic in rows.
These dynamics yield consensus in a strongly connected social network. The

opinions of all agents are converging to the same value: each agent has direct or
indirect influence on any other agent and the existing differences in their opinions
are gradually vanishing. This model will be considered in detail in Chap. 2.

Note that the structure of influence networks imposes essential restrictions on the
possibility of reaching consensus. Obviously, e.g., in an unconnected network
consensus can be reached in special cases only. There may exist differing opinions
in strongly connected networks, e.g., if the agents are less sensitive to influence
[67]. In such models, at each step the agent’s opinion is defined as the weighted
sum of the opinions at the preceding step and the initial opinion:

x tþ 1ð Þ ¼ KAx tð Þ þ In � K½ �x0;

where K ¼ In � diag Að Þ
The initial opinions of agents can be interpreted as their individual preferences or

deep-rooted beliefs that have the same influence during opinions exchange.
Similar dynamics are observed in the opinion formation model [44] for the

networks with compound nodes. In such networks, each node consists of two
interacting agents, external and internal, and communicates with other nodes
through his/her external agent only; the internal agent (treated as the confidant—
friend or consultant—of the external agent) communicates with the latter only.

A multidimensional extension of the model with insensitive agents was descri-
bed in [175]. Within this model, several interconnected issues (m different themes)
are considered simultaneously, and each agent has some opinion on each of these
issues. The opinion of agent i (i 2 N) on m different issues is defined by the vector

x tð Þ
i ¼ ðx tð Þ

i 1ð Þ; . . .; x tð Þ
i mð ÞÞ. At step t, the opinion vector of agent i has the form

x tð Þ
i ¼ kii

X
j2N

aijy
t�1ð Þ
j þ 1� kiið Þx 0ð Þ

i

y t�1ð Þ
j ¼ Cx t�1ð Þ

j ;

where C denotes the mutual influence matrix of the issues and y t�1ð Þ
j are convex

combinations of agent j in several issues. In matrix form the opinion dynamics can
be written as

x tð Þ ¼ KAð Þ � C½ �x t�1ð Þ þ In � Kð Þ � Im½ �x 0ð Þ

where � means the Kronecker product, K ¼ In or K ¼ In � diagA depending on
the model modification.
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Generally speaking, within the above-mentioned models the mutual influence of
agents gradually diminishes the difference in their opinions, even despite the
consideration of additional factors (prejudice, common themes of interest) that
preserve some divergence of opinions. In particular, by the hypothesis of averaging
the opinions never leave a certain range of initial opinions.

So far, the dynamic models of opinion formation have been thoroughly studied
on the theoretical issues of reaching network consensus. Such models are often
analyzed using the apparatus of stochastic matrices, homogeneous and inhomo-
geneous Markov chains. As is well-known, opinion dynamics can be modeled by
Markov chains. Consensus is reached in a homogeneous Markov network
depending on the convergence of the power series of its stochastic matrix. Some
sufficient conditions of such convergence were established in [18, 51]. For the
stochastic matrices that do not guarantee consensus, the necessary conditions of
consensus were suggested in [18] while the minimal variations of the initial
opinions of agents (beliefs) leading to consensus were found in [2].

The dynamic model of agents’ beliefs was further generalized in [41] so that the
communication matrix varies at each step and the iterative process is defined by the
product of matrices. The opinion coordination problem in this setup is reduced to
the convergence analysis of inhomogeneous Markov chains. Moreover, this class of
opinion formation models has close connection to the research of consensus in
multiagent systems, another field of intensive investigations (e.g., see [38]). The
theoretical results established there can be extended to social networks.

In the opinion dynamics models discussed above, consensus is reached through a
gradual convergence of the initially different opinions of interacting agents to the
same opinion. Besides consensus, real social networks also have other social and
psychological phenomena such as group polarization (any initially dominating
viewpoint becomes stronger in a group discussion) [149], opinions polarization (the
disagreements between two opposing groups are deepening), non-conformism, etc.
The classical models of opinion dynamics do not properly reflect the stable dif-
ferences in opinions, clustering effects (the appearance of sets of agents with unique
common opinions) or even the rise of radical opinions in highly connected network
structures. Therefore, many researchers have been suggesting formal mathematical
models that describe consensus together with other relevant factors (see [8, 52, 53,
101, 102, 114, 204] and Chap. 2 of this book). Particularly, the clustering of
opinions as a macro-effect was considered in the bounded confidence models [52,
101, 102] under the assumption that sufficiently close agents (neighbors) may
influence each other. This rule of interaction is often motivated by hemophilia and
social identification.

1.1.4 Spread of Influence and Information

The influence of one subject on another in a socium affects the opinions and also
behavior of the subject under influence. In this subsection, we will describe in brief
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some publications dedicated to the spread of activity (opinions, information,
innovations) through social networks based on the influence of some agents on
others. Linear threshold models and independent cascade models are among fun-
damental optimization and simulation models for information (activity) spreading
in social networks.

Independent cascade models belong to the models of interacting particle
systems and are closely related to the models of epidemics (also see the family of SI
models).

In these models, the agents from a set N ¼ 1; . . .; nf g form a social network [75,
124]. Agents can be in two states, active or passive; denote by St�N the set of
active agents at a step t � 0. The weight of a graph edge (i, j) is the probability
pij 2 0; 1½ � with which agent i activates agent j.

The initial set S0 � N of all active agents at the step t = 0 is known. At each
subsequent step t � 1, (a) all previously active agents at the step t � 1 preserve
their state and (b) each agent i 2 St�1nSt�2 activates one of his/her passive
neighbors j 2 NnSt�1 with the probability pij 2 0; 1½ � independently of other agents.

The influence level of a set A of agents is defined as the expected number of
active agents at the end of spreading given S0 = A.

Models of threshold behavior. Whereas independent cascade models reflect the
viral spread of some activity, the threshold models describe a complex form of
agents’ behavior in a social network [87] as follows. An agent becomes active only
if the value of an aggregating function of all his positive signals (e.g., the sum of all
signals or the number of such signals) exceeds a given threshold. Such threshold
behavior is often called complex contagion [40]. As a matter of fact, there exist
many mathematical models of threshold behavior [87, 124, 167].

A classical model is the linear threshold model [123, 124]. In this model, agents
from a set N ¼ 1; . . .; nf g can be active or passive. Designate as St �N the set of
active agents at a step t � 0. The influence of agent j on agent i is defined by the
weight wij 2 0; 1½ � of the corresponding edge in the network graph. For an agent,
the total influence of his/her neighbors satisfies the constraint

P
j wij � 1.

The conservatism of agent i completely depends on his/her activation threshold
/i 2 0; 1½ �. In some models, all agents have the same fixed value /i (e.g., see
[124]); other models proceed from the assumption that the threshold is random with
some probability distribution [148]. In general, the individual differences of agents
can be determined by their experience, convictions, personal traits, or the influence
of mass media [205].

The linear threshold model has the following dynamics. There is a given set
S0 � N of active agents at the initial step t = 0. At each subsequent step t � 1,
(a) all previously active agents at the step t � 1 preserve their state and (b) each
inactive agent i 2 NnSt�1 becomes active if the influence of his/her active neigh-
bors exceeds the activation threshold, i.e.,
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X
j2St�1

wij �/i:

The paper [124] suggested extensions for the linear threshold and independent
cascade models as follows.

Generalized threshold model. Each agent v decides to be active in accordance
with a monotonic activation function fv: S � Nv ! [0, 1], fv(∅) = 0, where Nv is the
set of his/her neighbors. So the activation function describes the local influence of
neighbors. Each agent initially chooses a random threshold hv with the uniform
distribution and then becomes active if fv(S) � 0 (in addition, see [164]).

Generalized independent cascade model. The probability pv(u, S) that agent
u activates agent v depends on the set S of agents who have already failed to do it.
The model includes the following constraint: if neighbors u1; . . .; ul are trying to
activate agent v, then the probability that he/she becomes active after l attempts is
independent of the order of activation attempts.

As a matter of fact, the linear threshold model is not equivalent to the inde-
pendent cascade model. However, the equivalence conditions of their generalized
versions were established in [124]: for any generalized independent cascade model
with given parameters, there exists an equivalent generalized threshold model, and
vice versa.

Influence maximization in models of information spreading. As a rule, a
subject applies informational influences to members of a social network for a
maximal spread of necessary information (ideas, opinions, actions, innovations)
through it. This goal can be achieved in different ways but often informational
influences aim at a small number of key (influential) nodes.

The maximization problem for the spread of information (influence) has the
following formal statement. Denote by S the initial set of active nodes—the ini-
tiators of information spreading in a network G = (V, E). Let r(S): 2V ! ℝ + be a
known relationship between the expected number of active nodes in final analysis
and the initial set of initiators (the function of global influence or resulting influ-
ence). By the budget constraint, it is possible to influence at most k nodes. The
problem is to find a set S of k nodes that maximizes the function r(S). Also note
other possible setups [42, 81, 141], with temporal spreading constraints: it is nec-
essary to activate a given number of users in minimal time and/or using the minimal
number of initiators. Alternatively, activation can be performed at different steps,
not only at the initial step.

The paper [124] considered influence maximization for two basic models of
spreading, namely, the linear threshold and independent cascade models. As
demonstrated by the authors, this problem isNP-hard. The greedy heuristic (1 – 1/e)-
optimal algorithmwas also developed in [124] for choosing the initial set S. Influence
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maximization is similar to the maximization of submodular functions,1 a well-known
optimization problem that has been studied by several researchers (e.g., see [154] and
modern surveys in the monographs [68, 201]). So the corresponding algorithms can
be used after proving that r(M) is a submodular function. This was successfully done
in [124].

However, submodularity is not guaranteed for global influence functions in some
generalized threshold and independent cascade models; hence the greedy heuristic
(1 – 1/e)-optimal algorithm becomes inapplicable for them. The following impor-
tant result was established in [150]. Consider the generalized threshold models in
which local influence functions fv are monotonic and submodular; then the resulting
global influence function r(	) is also monotonic and submodular.

The greedy heuristic (1 – 1/e)-optimal algorithm suffers from poor scalability to
large social networks, which forms its major drawback. A key component of this
algorithm is calculation of influence level (global influence) for a given set of
nodes, an #P-hard problem [43, 208]. The influence level is estimated using the
Monte Carlo simulations: activity spreading is executed very many times. Actually
this greedy algorithm is (1 − 1/e − e)-optimal, where e depends on the number of
executions (simulations) of activity spreading.

Many researchers suggested heuristics for a faster choice of the initial set
S. Particularly, the heuristics introduced in [82] guarantee (1 – 1/e)-optimality with
deferred calculations of the goal function (influence level) as follows. Owing to
submodularity, at a current iteration of the greedy algorithm there is no need to
calculate the goal function at a new node (candidate in the desired set) if the
estimated increment of the goal function from adding this candidate at the previous
iteration is smaller than its best increment from adding another node at the current
iteration. Other heuristics are based on different approximations of the goal function
and do not guarantee (1 – 1/e)-optimality [43, 83, 116, 117, 208].

The paper [124] also studied influence maximization in marketing. Consider
m different marketing actionsM1; . . .;Mm, each possibly affecting a certain subset of
agents in a social network in order to increase the probability of activation. In other
words, the initial set N0 of active agents is not defined. An amount xi is invested in
each marketing action i. The total amount of investments satisfies the budget con-
straint. A marketing strategy forms a vector x ¼ x1; . . .; xmf g. The probability
hv(x) that agent v becomes active is determined by the strategy x. The function hv(	) is
nondecreasing and satisfies the diminishing returns property, i.e.,

8x� y; 8a� 0 : hvðxþ aÞ � hvðxÞ� hvðyþ aÞ � hvðyÞ:

As the result of direct marketing actions and further influence, the expected
number of active agents makes up

1A submodular function f is a mapping of a finite set U into nonnegative real values that satisfies
the diminishing returns property: the incremental output from adding an element to a set S is at
least as high as the incremental output from adding this element to any set that contains S.
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ELðxÞ ¼
X
Z�V

rðZÞ
Y
u2Z

huðxÞ
Y
v 62Z

½1� hvðxÞ�:

Make the following assumptions for approximate maximization of this functional:
(a) the value EL(x) can be estimated at each point x and (b) it is possible to find
direction i with almost maximal gradient. Denote by ei the unit vector of axis i. For
some value c � 1, let there exist i such that EL(x + dei) − EL(x) � c (EL
(x + dej) – EL(x)) for any j, where d is a constant. Then the approximate solution
consists of two stages: (1) dividing the whole budget k into k/d parts of amount d and
(2) at each step, investing d in the marketing actionMi that maximizes the gradient of
EL(	).

Influence minimization in models of information spreading. In many appli-
cations (particularly, informational safety), the spread of undesired information
through a social network must be detected as soon as possible; in an alternative
setup, the problem is even to minimize the spread of such information. To this
effect, the states of a small group of social network nodes (sensors) are often
monitored. In final analysis, the payoff of a control subject may depend on the
spread detection time as well as on the number of spread cascades and the number
of infected nodes that were successfully detected while his/her cost may depend on
the properties of sensor nodes (see Sect. 3.2).

In [136], a social network was represented as a graph G(N, E) in which the
resources of a control subject are limited by a given value B. The following cascade
spreading data were assumed to be available: each cascade initiated at node
i reaches node u in a given time T(i, u). The sensor set Z was found by maximizing
the expected payoff, i.e.,

max
Z�V

RðZÞ 

X
i

PðiÞRiðTði; ZÞÞ;

where T(i, Z) denotes the minimal detection time for the cascade initiated at node i;
P is the probability distribution of all cascades by their types (initiation nodes); Ri(T
(i, Z)) specifies the payoff from detecting cascade i at the time T(i, Z); finally, the
cost function has the form c Zð Þ ¼ P

a2Z c að Þ�B.
As shown in [136], the payoff functions are submodular in the sense that more

sensors result in smaller marginal profit. Hence, the set Z can be calculated using
the greedy algorithms [154].

Competing innovations. Up to this point, we have considered the models of
single activity spreading in which an agent can be active or passive. In a more
realistic scenario, several activities are spreading through a social network simul-
taneously (often similar competing innovations—ideas, opinions, products, etc.).
The existing publications mostly deal with the spread of two opposite activities
(innovations A and B, or positive and negative activities, see [95]), suggesting two
types of models—the competitive independent cascade (CIC) and competitive
linear threshold (CLT) models.
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Consider the competitive independent cascade model in brief. In this model, each
agent can be in one of three states (passive, positive active, or negative active).
A passive agent may become active but the converse fails. Besides, an active agent
cannot change his/her type of activity and also blocks the spread of the other type of
activity (alien activity). At the initial step, all positively active agents form the set S0 þ

while all negatively active agents the set S0�ðS0 þ \ S0� ¼ ;Þ. Two probabilities are
defined for each arc (u, v) of the graph, namely, p+(u, v) as the probability of positive
activity transfer and p−(u, v) as the probability of negative activity transfer. At each
step t � 1, all previously active agents are trying to activate their passive neighbors
independently from each other with the probabilities defined on the graph arcs. In
case of success, the activity type of an activated agent is determined by some rule
(e.g., proportionally to the share of successful activation attempts of corresponding
type). This process generates new sets of active agents, St þ and St�.

The resulting positive and negative influence functions, r+(S0 þ , S0�) and
r−(S0 þ , S0�), are introduced by analogy with the corresponding classical models
(the LTM and ICM, respectively).

The following setups of optimization problems arise accordingly.
In the first setup [32, 100], a control subject maximizes (r−(∅, S0�) –

−(S0 þ ,S0� )) by choosing an initial set S0 þ of cardinality k given the set S0�. In
other words, he/she seeks to minimize the spread of alien activity (hazards, e.g.,
dangerous opinions or fake news) using the spread of his/her activity through the
network (counterpropaganda).

In the second setup [22, 39, 142], a control subject maximizes the spread of his/
her (positive) activity r+(S0 þ ,S0� ) by choosing an initial set S0 þ of cardinality
k given the set S0�. Here a possible interpretation is a known current spread of a
competing product or news.

Consider this setup for the competitive independent cascade model in slightly
modified notations. The paper [39] studied influence maximization for two com-
peting innovations (players) A and B within the independent cascade model. Each
agent in a network described by a graph G(N, E) can be in one of three admissible
states, A (adopted innovation A), B (adopted innovation B), and C (no decision
yet). An agent may pass from state C to any other state; other state transitions are
impossible. Denote by IA and IB (IA [ IB = I) the initial nonintersecting sets of
active nodes of corresponding types. For player A, the influence maximization
problem is to maximize the expected number f(IA| IB) of agents adopting innovation
A given the set IB with an appropriate choice of IA.

The authors [39] suggested two extended versions of the independent cascade
model, namely, the distance-based model and the wave model. In the former, each
agent adopts the innovation from the nearest activated agent from I. The latter
model describes step-by-step innovation spreading: a previously passive agent is
activated at a current step by choosing uniformly a random neighbor at the distance
proportional to step number.

As stated in [39], the functions are submodular, monotonic and nonnegative;
moreover, approximation algorithms were developed for calculating the set IA. The
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authors also noted that promising lines of further investigations are Nash equilib-
rium calculation and application of Stackelberg games.

These setups can be examined within the framework of hierarchical games in
which one of the players chooses a best response to the action of the other. The
main result here consists in influence maximization using greedy algorithms for
best response calculation.

Other game-theoretic setups are also possible in which players choose their
actions simultaneously and independently from each other. For example, the papers
[7, 203] considered game-theoretic models of competing innovations (activities)
with the following features. There exists a set of players and each member of this
set is interested in a maximal spread of his/her activity through the network.
Moreover, each player can influence the activity of network users at the initial
step. This leads to a noncooperative normal form game, for which the authors
established the existence of pure strategy Nash equilibria.

Models of competing innovations often neglect the fact that any online social
network has an owner who controls it and may restrict any influences (e.g., some
marketing campaigns). The paper [142] considered fair competitive viral marketing,
i.e., a fair allocation of initial sets of users among the subjects seeking to preserve
their activity in a social network.

Other Models of Activity Spreading
Note that most influence models discussed above involve simulations and their
approaches are traditional for simulation modeling. They are close to collective
behavior models [162], models of evolutionary games (e.g., see [206, 214]) and
models of artificial societies, which are being intensively developed using
agent-based simulation [132, 192].

Consider a series of influence models drawing some analogies with medicine,
physics, and other sciences (also, see the survey [128]).

The models of percolation and contagion. These models have numerous appli-
cations—from epidemic simulation to oil field exploration—and represent a popular
analysis method of information spreading. The classical epidemic model relies on
the following cycle of contagion processes: initially, an individual is susceptible
(S) to the disease; a contact with an infected individual makes him/her in-
fected & infectious (I) with some probability b; after a certain period, he/she
becomes recovered/removed (R) (i.e., restores the immune system or dies); with the
course of time, immunity is reduced and he/she becomes susceptible again.

In the SIR model [10], a recovered individual is insusceptible to the disease,
S ! I ! R. The whole society consists of three groups, S(t) (the individuals who are
not infected yet or are susceptible to the disease at a time t), I(t) (the infected indi-
viduals), and R(t) (the recovered individuals). Let N = Const = S(t) + I(t) + R(t).
The epidemic dynamics are described by the following system of three differential

equations: dSðtÞdt ¼ �b N SðtÞ
N IðtÞ ¼ �b SðtÞ IðtÞ (i.e., each individual infected per unit

time is contacting susceptible individuals and makes them infected with the
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probability b); dRðtÞdt ¼ cIðtÞ (i.e., infected individuals are recovering from the disease

after the average period 1/c); finally, dIðtÞdt ¼ bSðtÞIðtÞ � cIðtÞ.
There exist other, more complex models of epidemics (see the surveys in [112,

155]), particularly, the SIRS model in which a recovered individual becomes sus-
ceptible with the course of time. The flu is a natural example of disease well
described by this model. Another phenomenon fitting this model is information
spreading in a social network. A blogger reads a blog of his friend (susceptible)
dedicated to some theme, then writes his/her own blog on it (infected), getting back
to this theme later (susceptible).

For social networks, a crucial role is played by the epidemic threshold kc, an
index that defines the critical probability of infection for neighbors. Once the
epidemic threshold is exceeded, infection spreads through the whole network. This
index depends on the properties of social network graph, e.g., on the number of
nodes, the distribution of connections, the coefficient of clustering, and others. So
infection spreading strongly depends on the representation model of network graph.

If a social network is described by a random graph, then infection with a
probability exceeding the epidemic threshold has exponential growth: k = b/
c > kc. On the other hand, infection with smaller probability is vanishing with
exponential rate.

A more realistic model of a social network is a scale-free graph in which some
nodes have connections to thousands or even millions of other nodes that are par
excellence connected to a few nodes (no characteristic scale). In such graphs, the
number of node connections satisfies the power distribution [14]. As indicated by
the spread analysis of computer viruses [183], scale-free networks have no epi-
demic threshold: in case of infection, the epidemic surely spreads through the whole
network. However, in social networks the themes of discussion may spread without
epidemics and hence the threshold is actually nonzero. So a more adequate model is
required for the networks with the power distribution that would reflect the delicate
properties of such networks (e.g., the coefficient of clustering [58]). An alternative
approach consists in an appropriate modification of the infection transfer model for
reducing the probability of infection for larger “distances to an initiator” [215].

Avalanche-like processes. As noted in [50], a wide range of natural and social
phenomena (combustion and explosion, the replication of viruses or the accumu-
lation of decay products in a living organism, social conflicts [221] induced by
meeting processes, stockjobbing and agiotage for different products, the diffusion of
technological and managerial innovations including information systems and
technologies, informational influences on individual and collective subjects) has a
common distinctive feature that unites all these processes and systems into the same
class. The matter concerns their avalanche-like spread and evolution (similarly to
chain reactions) and consequently the presence of internal or external connections
with a large (often exponential) variation of one parameter under small variations of
the other. In [50] such processes were called fast social and economic processes.
The cited monograph contains a rich spectrum of models for these processes (as

1.1 Influence and Influence Level 17



well as the models of percolation and contagion and cellular automata models) and
also results on their simulation and identification using real data.

Cellular automata models. The processes of information spreading in social
networks can be described within the following approach. Consider a social net-
work as a complex adaptive system that consists of very many agents interacting
with each other. Such interactions form some collective behavior, which is difficult
to predict and analyze. This class of complex systems can be studied and modeled
using cellular automata. A cellular automaton (e.g., see [188]) is a set of objects
(here, agents) often representing a regular lattice. At each discrete time, the state of
a separate agent is characterized by some variable. All states are synchronously
evolving in discrete intervals in accordance with fixed local probabilistic rules,
which may depend on the state of a given agent and also on the states of his/her
nearest neighbors.

The paper [75] modeled the word-of-mouth effect in information spreading
through social networks. Each agent in a large network belongs to a single personal
network in which agents have strong (fixed and stable) connections. Each agent
also has weak connections to the agents from other personal networks (weak and
strong connections were discussed in [86]). The probability that at a given time an
informed agent influences an uninformed one via a strong connection (making him/
her informed) is bs; via a weak connection, bw < bs. Besides, at a given time
uninformed agents become informed with a probability a as the result of advertising
and other marketing tricks. (In accordance with empirical evidence [37], this
probability is smaller in comparison with the word-of-mouth effect.).

Thus, at each time t, an uninformed agent having m strong connections to
informed agents from his/her personal network and j weak connections to informed
agents from other personal networks becomes informed with the probability

pðtÞ ¼ ð1� ð1� aÞð1� bwÞ jð1� bsÞmÞ:

The authors [75] suggested the following probabilistic cellular automaton.

1. All agents are originally uninformed (state 0).
2. At the initial time, the agents become informed by advertising because

spreading based on the word-of-mouth effect needs informed agents. For each
agent, a random number U (0 < U < 1) is generated and compared with the
probability p(t) of informing. If U < p(t), then this agent becomes informed
(state 1).

3. At the subsequent times, the word-of-mouth effect with strong and weak con-
nections is activated. Again, if U < p(t), then an agent becomes informed (state
1).

4. The process repeats until 95% of agents become informed.

The following parameters were specified in [75] for simulations: the size of each
personal network; the number of weak connections for each agent; the probabilities
bs, bw, and a. As it turned out, despite smaller probability the weak connections
have at least the same impact on the rate of information spreading as their strong
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counterparts. For the initial phase (early informed), the awareness of agents con-
siderably depends on advertising but its role gradually diminishes. For the next
phase (middle informed), information spreads through personal networks via strong
connections; as the number of informed agents in such networks is increasing, the
impact of strong connections is vanishing while the role of weak connections in the
activation of new networks is rising. For larger personal networks, the role of strong
connections is increasing while that of weak connections decreasing. In the net-
works with many weak connections, the effect from strong connections becomes
lower (from weak connections, higher). Under intensive advertising campaigns, the
effect from strong connections is slightly increasing while that of weak connections
decreasing.

Model of marketing actions based on Markov network. Consider a social network
as a set of potential customers of some product or service or potential adopters of a
new technology (innovation). From the supplier’s viewpoint, the agent’s value
(utility) in a social network depends on this agent (e.g., the expected profit from
selling the product or technology to him/her) and also on his/her influence on other
agents. In other words, of crucial importance are the configuration and state of a
social network—the opinions of potential customers about the product (see exam-
ples in [108]). So it is necessary to identify a small number of agents (e.g., for
suggesting preferential terms of sales), who would facilitate the spread of innovation
through the whole network. Actually, this is an influence maximization problem.

The authors [57] also addressed the problem of k most influential agents in a
social network, with application to viral marketing. A market was modeled by a
social network of agents (Markov network) in which the value of each agent
depends on the expected profit from selling a product to this agent (the intrinsic
value of customer) and also to other agents under his/her influence, and so on (the
network value of customer).

In [57], the problem of optimal marketing actions MA ¼ MA1; . . .;MAnf g was
stated as follows. Denote by MAi a marketing action associated with agent
i (Boolean variable, 1—discount and 0—no discount, or continuous variable that
defines the amount of discount). For a set of n agents, let the predicate Xi = 1 if
agent i buys the product and Xi = 0 otherwise. Assume the product possesses
several attributes Y ¼ Y1; . . .; Ymf g. For each agent i, there is a set Ni of his/her
neighbors affecting Xi (the network of agents). In turn, agent i has influence on his/
her neighbors.

Introduce the following notations: c as the marketing cost per one agent; rv1 as
the sale proceeds from an agent with a marketing action; rv0 as the sale proceeds
from an agent without a marketing action. If a marketing action includes a discount,
then rv1 < rv0; otherwise, rv1 = rv0. For the sake of simplicity, consider the
Boolean vectors MA only.

Denote by f 1i ðMAÞ the result of making MAi = 1 provided that all other elements
of this vector are invariable and define f 0i ðMAÞ by analogy. Then the expected profit
increase from a marketing action (for a single agent without the influence on other
agents), i.e., the intrinsic value of agent i is calculated by
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ELPiðXk; Y ;MAÞ ¼ rv1PðXi ¼ 1jXk; Y ; f 1i ðMAÞÞ
� rv0PðXi ¼ 1jXk; Y ; f 0i ðMAÞÞ � c

where Xk gives the set of agents with known states (who surely purchased the
product or not) and P(Xi | X

k, Y, MA) is the conditional probability of product
purchase for agent i.

Consequently, for selected agents the total expected profit increase from all
marketing actions makes up

ELPðXk; Y ;MAÞ ¼
Xn
i¼1

rviPðXi ¼ 1jXk; Y ;MAÞ

�
Xn
i¼1

rv0PðXi ¼ 1jXk; Y ;MA0Þ � jMAjc

where MA0 denotes a zero vector; rvi = rv1 if MAi = 1 (rvi = rv0 otherwise); finally,
|MA| is the number of selected agents.

The total value of agent i is defined by ELPðXk; Y ; f 1i ðMAÞÞ�
ELPðXk; Y ; f 0i ðMAÞÞ. (That is, the valueMA changes for other agents and may affect
their probabilities of purchase). Then the network value of each agent is the dif-
ference between his/her total and intrinsic values. So the value of each agent
depends on the marketing actions carried out for other agents and also on product
purchases by them.

Again consider the problem of k most influential agents in a social network.
Obviously, such agents can be identified by calculating an action MA that maxi-
mizes ELP. In the general case, the exhaustive search of all possible combinations
is required to find the optimal action MA. The following approximation procedures
yield almost optimal solutions.

(1) Single pass. For each agent i, set MAi = 1 if ELPðXk; Y ; f 1i ðMA0ÞÞ[ 0, and set
MAi = 0 otherwise.

(2) Greedy search. Let MA = MA0. Loop through all MAi and set MAi = 1 if
ELPðXk; Y ; f 1i ðMAÞÞ[ELPðXk; Y ;MAÞ. Continue looping until there are no
changes in a complete scan of the MAi.

(3) Hill-climbing search. Let MA = MA0. Set MAi1 ¼ 1, where i1 ¼ argmaxi
ðELPðXk; Y ; f 1i ðMAÞÞÞ. Now set MAi2 ¼ 1, where i2 ¼ argmaxiðELPðXk; Y ;
f 1i ðf 1i1 ðMAÞÞÞÞ. Repeat this until there is no agent i such that MAi = 1 increases
ELP.

Influence models based on Bayesian networks. The paper [219] suggested an
influence model for a group of agents (team) that represents a dynamic Bayesian
network (DBN) with the following two-level structure. The first level (individuals)

20 1 Models of Influence in Social Networks



is used to model the actions of each agent while the second level (group) the actions
of the whole group. There are N agents totally. At each time t, (a) agent i is in a state
Sit whose probability PðSitjSit�1; S

G
t�1Þ depends on the agent’s previous state and the

state of the whole group; (b) agent i performs an action Oi
t with the conditional

probability PðOi
tjSitÞ; (c) the group is in a state SGt whose probability

PðSGt jS1t ; . . .; SNt Þ depends on the states of all agents. Therefore, the probability that
at some time T the group of N agents performs the aggregate action O in the
aggregate state S makes up

PðS;OÞ ¼
YN
i¼1

PðSi1Þ
YN
i¼1

YT
t¼1

PðOi
tjSitÞ

YT
t¼1

PðSGt jS1t ; . . .; SNt Þ
YT
t¼2

YN
i¼1

PðSitjSit�1S
G
t�1Þ:

Introduce a new variable Q that defines group state, and make the following
assumptions.

(a) This variable is independent of the states of other agents.
(b) When Q = i, the group state SGt depends on the state Sit of agent i only.

Then PðSGt jS1t ; . . .; SNt Þ can be written as

XN
i¼1

PðQ ¼ iÞPðSGt jSitÞ ¼
XN
i¼1

aiPðSGt jSitÞ;

where ai denotes the influence of agent i on the group state.
The described two-level influence model has close connection to a series of other

models, namely, the mixed-memory Markovian model (MMM) [187], the coupled
hidden Markovian model (CHMM) [171], and the dynamical systems trees (DST)
[106]. The MMM decomposes a complex model (e.g., a Markovian model of order
K) in the following way:

PðStjSt�1; St�2; . . .; St�KÞ ¼
XK
i¼1

aiPðStjSt�iÞ:

The CHMM describes the interaction of several Markov chains through a direct
connection between the current state of one stream and the previous states of all
other streams: PðSitjS1t�1; S

2
t�1; . . .; S

N
t�1Þ. However, this model is computationally

intensive and hence often simplified as follows:

PðSitjS1t�1S
2
t�1; . . .; S

N
t�1Þ ¼

XN
j¼1

ajiPðSitjS j
t�1Þ;

where aji denotes the influence of agent j on agent i. The suggested model extends
these models using the variable SG of group level, which reflects the influence
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between all agents and the group PðSGt jS1t ; . . .; SNt Þ ¼
PN

i¼1 aiPðSGt jSitÞ as well as
defines the dynamics of each agent depending on the group state PðSitjSit�1; S

G
t�1Þ.

DST have a tree structure that models the interactive processes through hidden
Markov chains. There exist two distinctions between the DST and the model dis-
cussed above [219]. First, in the DST the predecessor has its own Markov chain; in
the other model, the current state of the group does not directly depend on its
previous state (i.e., an action of the group is the aggregated action of agents).
Second, in the model [219] the group and agents affect each other, in contrast to the
DST.

The authors [219] expected that their multilevel influence approach would be a
good tool for social dynamics analysis and revelation of group behavior templates.

Voter models. The stochastic voter model that belongs to the class of interacting
particle systems was suggested by Clifford and Sudbury [49, 139]. Its original
interpretation was associated with voting on two political options. Nevertheless, the
voter model can be used to describe the spread of opposite opinions in social
networks [61, 138, 176].

Influence maximization based on the voter model was considered in [61]. In this
model, a social network is represented by an undirected graph with loops G(N, E).
Each node v ∊ N has a set of neighbors N(v) and arbitrary initialization with value 1
or 0. At a time t + 1, node v chooses one of the neighbors (with the same proba-
bility) and adopts his/her opinion:

ftþ 1ðvÞ ¼
1; with the probability fu2NðvÞ:ftðuÞ¼1gj j

NðvÞj j ;

0; with the probability fu2NðvÞ:ftðuÞ¼0gj j
NðvÞj j :

(

This model is similar to the classical linear threshold model in the sense that with
higher probability each agent changes his/her opinion to the opinion adopted by
most of his/her neighbors. Unlike the threshold model, in the voter model each
agent may pass to the passive state.

Let cv be the initial persuasion cost for agent v (f0(v) = 1). The influence max-
imization problem has the following statement: find f0: N ! {0, 1} that maximizes
the expected value E½Pv2N ftðvÞ� under a given budget constraintP

fv2Njf0ðvÞ¼1g cv �R. As established in [61], in the case of homogeneous agents
with the same initial persuasion cost, the optimal solution is to select k network
nodes with highest degree. This result well matches the heuristic often used in
practice.

Influence models based on Ising model. The Ising model is a mathematical
model that describes ferromagnetism [129]. (Note that this model is treated as an
example of Markov networks.) It considers the interaction of nearest
atoms-neighbors in a crystal lattice; so there exists an obvious analogy with the
relations of neighbor agents in a social network. The interaction energy is given by
Eij = –J Si Sj, where s denotes atomic spin (±1) and J means the interaction con-
stant. The total energy E(S) can be calculated by summing over all atoms of the
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lattice: EðSÞ ¼ �J
P

i� j Si Sj. The total energy in an external field h has the form
EðSÞ ¼ �J

P
i� j Si Sj þ h

P
i Si:

For a ferromagnetic, the interaction constant is J > 0, and the energy takes
minimal value for the codirectional spins. The system entropy is minimal in the
ordered state (under minimal energy) and demonstrates fast growth with the system
energy. For temperatures below the critical threshold, almost surely most of the
atomic spins have the same orientation; for higher temperatures, their orientation is
random.

As hypothesized in [199], conformity or independence in a large social group
can be well described by the Ising model. Nearest neighbors have determinative
influence while the group’s capability to think creatively and adopt new ideas is an
analog of temperature. Finally, the role of an external field in a social group is
played by authority or control.

1.2 Common Knowledge. Collective Actions

1.2.1 Role of Awareness

Consider an agent that enters some social network. An agent is informed about
current situation (the actions and beliefs of other agents, the parameters of an
external environment—the so-called state of nature, etc.). Situation determines the
agent’s set of values and beliefs and his/her attitude that are interconnected in the
following way: values affect attitude; in turn, the latter produces inclinations toward
certain beliefs; these inclinations are associated with a hierarchical system of beliefs
about the environment that exists in the agent’s memory.2 Inclinations toward
certain beliefs and current situation (e.g., the actions of other agents) form new or
change old beliefs. Being guided by these beliefs and a preset goal, an agent makes
a decision and acts accordingly. The results of actions change current situation as
well as the internal values, beliefs and attitude.

Beliefs of order n. Mutual beliefs. For agent’s decision-making, of crucial
importance are his/her beliefs about the beliefs of other agents and so on. “Agent A
knows that agent B knows that agent C knows the value p” is an example of beliefs
of the second order (the second reflexion rank). Really, before acting each agent
tries to predict the behavior of other agents. At the same time, other agents may
have their own beliefs of different orders (see the survey and models of mutual
beliefs in [168]).

For many social relations, events and actions in which participants have no
explicit agreements or contracts, a major role is played by the mutual beliefs based

2Note that the terms “value,” “belief,” “attitude,” etc. have different interpretations in modern
psychology and theory of multiagent systems that do not match each other.
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on the identity of their beliefs (see conventions in [137, 168]). Two approaches to
introduce the concept of mutual beliefs were separated out in [202] as follows.

(I) Iterative approach. In accordance with this approach, there exists a mutual
belief about p in a groupM if and only if (a) all agents from M know p; (b) each
agent knows that all agents know p; (c) and so on, ad infinitum. (In other words,
the fact p is common knowledge for all agents from M [168].) This approach
relies on the hypothesis that the agents have beliefs of very high reflexion
ranks. In reality, this is impossible or the agents simply cannot handle such
beliefs due to limited cognitive capabilities, lack of information or insufficient
rationality. (The problem of maximal reasonable reflexion ranks is called the
level problem in the Western literature). There exist several ways to solve this
problem (also see [168]).

(a) An agent in a group may act without distrusting in the judgement p (the lack of
disbelief, which is defined as no beliefs about the negation of p);

(b) All agents in a group merely have inclinations towards the beliefs of higher
order; in this case, the agents must be properly informed and possess common
reasoning rules for making the same conclusions.

In both cases, the agents must be rather rational and intelligent for obtaining the
beliefs of higher order without difficulty (if necessary). A possible prerequisite for
this process is what the beliefs of higher order actually suggest. Successful actions
often rely on the beliefs of the second order (generally speaking, this is not the case
—see the sufficient conditions in [168]).

Example 1.1 (an action performed jointly by two agents). The judgements of the
basic order are as follows.

(1) Agent A will perform his/her part of the action X, p(A).
(2) Agent B will perform his/her part of the action X, p(B).

Make the following assumptions.

(i) A expects (1) and (2).
(ii) B expects (1) and (2).

As established in [202], the level n = 2 is necessary and sufficient for performing
the joint action in this example. Obviously, agent A must be expecting that agent B
will perform the part p(B) of the action: in this case, the former is willing to perform
his/her own part. Agent A must be also expecting that agent B believes that agent A
will perform the part p(A). Otherwise, there are no sufficient grounds for agent A to
expect that agent B will perform the part p(B). (If, by the assumption of agent A,
agent B is not expecting that the former will perform p(A), then he/she will not
perform p(B) too.) So, in this case agent A will not perform his/her part. The same
reasoning applies to agent B. Consequently, it is necessary that the agents have
beliefs of the following order.
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(iii) A expects (i) and (ii).
(iv) B expects (i) and (ii). •3

Example 1.2 Assume that each member of the Society of Flat Earth knows that the
Earth is flat and, in addition, that all other members know it (because they belong to
this society). Each agent recognizes that the other agents in the group believe in the
same thing, and this establishes a social relation among them based on belief. But
this recognition disappears at the first level. Again, the second level is necessary
(and often sufficient) for the coordinated decisions of the members on the Earth
shape. Let somebody find out that they all have the same belief of the second order.
Then this person may study the possible beliefs of the third order, etc. •

Note that some social concepts are independent of mutual belief, e.g., hidden
social influence and power.

(II) Reflexive approach. There exists a mutual belief about p in a group G if and
only if (a) all agents from G assume p; (b) all agents assume there is a mutual
belief about p in G. This corresponds to the second reflexion rank [168].

Mutual belief as shared “we-belief.” “We-belief” is an agent’s belief about
p that satisfies the following properties.

(a) Each agent has this belief and assumes that
(b) all agents in a group have the same belief and also each agent assumes that
(c) all agents assume there is a mutual belief in the sense of (b).

Property (a) is required since there may exist no shared position without all
agents. Property (b) provides social cause for adopting this position. Property
(c) strengthens the cause, making it intersubject.

A shared “we-belief” implies that each agent has a group of “we-beliefs,” i.e.,
matches the third level of reflexion [168].

Mutual beliefs can be used to explain collective thinking and collective actions
[162, 168]. Some models with strategic and informational reflexion of social net-
work members will be described in Sect. 2.4 of this book.

1.2.2 Public Goods and Specialization

Collective actions, public goods, and coordination games. The following factors
are important for collective actions: awareness, communication, and coordination.
Collective action theory well describes a wide range of phenomena (public
movements, electorate behavior, membership in interest groups) connected with the
achievement of public goods through coordinated joint actions of two or more

3Throughout the book, • denotes the end of an example.
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individuals. This theory also studies the influence of external factors on group
behavior.

As is well-known, public goods are characterized by

(1) guaranteed consumption, i.e., it is impossible to eliminate those consumers of
public goods who have not paid for them;

(2) no competition during consumption: the fact of public goods consumption by
one subject does not reduce the consumption for other subjects.

Pure public goods are national defense, bridges, public opinion, open-access
databases, communication systems, etc.

For achieving the same public good (goal), two or more individuals make a
collective action. Each individual chooses between participation and
non-participation (free riding) in a collective action. Participation in a collective
action incurs some individual cost for achieving public goods, and each individual
can potentially gain without any cost (for a large number of individuals, the public
cost to detect free riders and impose sanctions increases). This leads to obvious
difficulty in the implementation of mutually beneficial collective actions, the free
rider problem well-known in modern microeconomic theory (e.g., see [144, 151]).

Agents can be stimulated to participate in public goods production through
incentives or certain social pressure schemes. As emphasized in [145, 172], only
organizations may bear cost for solving these tasks (organizations play key role in
interaction, motivation, communication and coordination of collective activity
[162, 165]). At least latent groups are needed, i.e., communities of common group
interest in public goods that still exist without organizational structure for com-
munication and organization but with structural leadership (Principals) for resource
accumulation and decision-making [145].

However, recent advances in information and telecommunication technologies
(personal computers, mobile phones, e-mail, chatting, Internet) for collective
actions have dramatically reduced the cost of communication and coordination [20],
in some cases eliminating the need for formal structure design. For example,
consider information of public utility as a public good. For the purposeful creation
of such a database and corresponding community, the coordination of participants
is required at the initial stage, which leads to the free rider problem. If such a
database is created in a purposeless way (i.e., participants do not know other
participants and publish their information independently at different public sources
—forums, web pages), trust rather than participation is the major problem.

Collective action situations in which all parties may gain from mutually coor-
dinated decisions (the coordination problem) are often modeled by coordination
games. Coordination games form a class of games with multiple pure Nash equi-
libria in which players choose the same or coordinated strategies [80, 99, 107, 153,
168]. In this book, we will consider collective actions of different agents within
social networks.

Collective actions in social networks. Here a key role is played by social
relations. On the one hand, social bonds can guarantee an efficient local social
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control for stimulating a wide participation in collective actions (as the result of
social pressure from neighbors, trust, social approval, the need for keeping positive
relations and meeting expectations, anaclisis, reputation maintenance, identification
with neighbors, etc.). For instance, the behavior of a given agent depends on the
actions of his/her neighbors. On the other hand, social bonds provide a given agent
with information about the intentions and actions of other agents in a network and
also form his/her (incomplete) beliefs for further decision-making. Finally, within
the limits of social bonds agents can put joint efforts to produce local public goods
and utilize them together. So the structure of a social network strongly affects the
agents’ decision-making and participation in collective actions.

The paper [46] considered the following game-theoretic model of collective
actions in a network. Agents are putting joint efforts to some collective action,
which is successful (yields a positive contribution to the goal functions of agents) if
the total effort exceeds a given threshold. The higher is the agent’s effort in the
successful action, the greater is his/her payoff. In addition, the agent’s effort itself
makes some negative contribution to his/her goal function, which depends on the
agent’s type (also called efficiency): the larger is the type, the less effort the agent
needs to put (particularly, in psychological terms this can be explained by higher
loyalty and sympathy to the collective action). The authors [46] established a
condition for the number of agents and their efficiencies under which nonzero
actions are an equilibrium; moreover, they described possible influence on the
agents’ types that implements the zero action (no actions for all agents) as a unique
equilibrium.

Public goods in social networks. The paper [23] studied public goods in a
social network as follows. Agents with social bonds are putting joint efforts to
produce public goods and utilize them. As noted in [23], this may cause network
specialization subject to public goods (also see the surveys in the theory of network
games [77, 113]). It was proved in [23] that there exists an equilibrium in which
some agents are making contribution (efforts) while the other take advantage of it.
Such specialization can be fruitful for the whole society if the contributors (spe-
cialists) have many connections in the network. New connections in the network
improve the availability of public goods yet reduce individual motivations for
additional efforts (higher contribution). Consequently, the total welfare is greater in
incomplete networks. In this sense, a promising line of further research can be the
dynamics and formation processes of social networks.

The authors [23] introduced a network model of public goods with a fixed
network structure. (A connection between agents i and j is defined by a binary value
rij = rji). Agent i chooses the amount ei of his/her efforts for putting in a public
good, which will be utilized by all his/her neighbors from a set Ni. The agent’s
payoff is described by a twice differentiable strictly concave function f(	) that
depends on the efforts (actions) ei of the agent and also on the efforts ei of his/her
neighbors. So the payoff function is defined by the effort vector e of agents and by
the graph G: Uiðe;GÞ ¼ f ðei þ

P
j2Ni

ejÞ � c ei, where c gives the cost of unit
effort.
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The game considered in [23] has a given network structure G and the agents are
simultaneously choosing their efforts to maximize their payoff functions. Due to
obvious symmetry of this game, for all agents the payoff functions are maximized
by the same effort e* that satisfies f′ (e*) = c. A vector e is a Nash equilibrium if and
only if, for any agent i, either ei � e�i and ei ¼ 0 (agent i puts no effort at all), or
ei\e�i and ei ¼ e�i � ei (some effort).

Positive and negative effects from new connections. On the one hand, a new
connection improves access to public goods; on the other, destimulates an agent to
put his/her efforts. Denote by W(e, G) the total payoff of all members of a social
network G in an action vector e. An action vector e is called second-best (or
utilitarian in the terminology of [151]) if there does not exist another vector e′ such
that W(e′, G) > W(e, G). In the general case, second-best vectors are defined sub-
ject to some constraints. Consider a second-best vector e in a graph G in which
agents i and j are not connected. Add the new connection (i, j). As a result, if agent
i put no effort before, the equilibrium remains the same and henceW(e, G + ij) > W
(e, G); if both agents put some efforts, then the equilibrium e is replaced by a new
equilibrium, possibly with smaller public welfare.

The authors [23] introduced the following modifications in the model.

(1) Imperfect substitutability of efforts: ei þ d
P

j2Ni
ej, where 0 < d � 1 (the

agent’s effort yields higher individual payoff than the efforts of other agents). If
the value d is sufficiently small, then the agents are putting strictly positive
efforts and there exists a unique distributed Nash equilibrium (no specializa-
tion). As proved in the paper, a specialized vector is an equilibrium if and only
if non-specialists are connected at least with s = 1/ d specialists from a maxi-
mal independent set.

(2) Convex costs. Let the effort cost c(ei) be an increasing convex function that
satisfies the condition c′ (0) > f ′ (+∞). In this case, the agent benefit from joint
efforts. In a complete graph, there exists a unique equilibrium with a distributed
action vector (i.e., all agents are putting the same efforts). Specialization is
possible in incomplete graphs. An effort e* that maximizes the payoff function
is achieved under the condition f ′ (e*) = c′ (e*). Assume an integer s is such
that f ′ (s e*) � c′ (0). It was established that a specialized vector forms an
equilibrium if and only if non-specialists are connected with at least s special-
ists from a maximal independent set.

(3) Heterogeneous agents. Let each agent i have individual cost ci and payoff fi
functions as well as a specific effort e�i that maximizes his/her payoff. A vector
e is a Nash equilibrium if and only if, for any agent i, either ei � e�i and ei ¼ 0
(agent i puts no effort), or ei\e�i and ei ¼ e�i � ei (some effort). In a complete
graph (to say nothing of incomplete ones), there exists a unique Nash equi-
librium in which agents with high threshold are putting nonzero effort (in other
words, heterogeneity leads to specialization).
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1.2.3 Communication and Coordination

The paper [47] considered a social network as a communication network through
which agents are informing each other about their willingness (decision) to par-
ticipate or not in a collective action. Each agent knows the decision of his/her
nearest neighbors; based on this local knowledge, each agent makes his/her own
decision in accordance with the following rule: “I will participate if you do” (the
coordination mechanism). This setup leads to a coordination game with incomplete
(imperfect) awareness. Communication networks facilitate coordination, and of
major interest are their properties that allow for collective actions. The authors [47]
studied minimal sufficient networks in which all agents are arranged in a hierarchy
of social roles/stages—initial adopters, followers,…, late adopters. Such networks
facilitate coordination in the following ways:

(1) each level is informed about the earlier levels;
(2) common knowledge is generated at each level.

So the role of (locally) common knowledge in a collective action is identified
and a correlation between the structure of a given social network and common
knowledge is established.

In the model [47], a group of agents is described by a finite set
N = {1, 2, …, n}. Each agent i 2 N is willing (w) to participate in a collective
action or not (x). The admissible states of nature form the set H = {w, x}n. Each
agent i makes a decision ai 2 {r, s}, where r means participation and
s non-participation. The agent’s payoff depends on his/her willingness to participate
and also on the decisions of all other agents in the group. By assumption, his/her
utility function ui: {w, x} 
 {r, s}n ! ℜ possesses the following properties:

uiðx; aÞ ¼ 0 if ai ¼ r;
1 if ai ¼ s

�
ð1:1Þ

(an agent always stands aside if he/she is not willing to participate);

8a; a0 2 fr; sgn such that a0j ¼ r ) aj ¼ r : uiðw; r; aNnfigÞ
�uiðw; s; aNnfigÞ� uiðw; r; a0NnfigÞ � uiðw; s; a0NnfigÞ

ð1:2Þ

(the agent’s willingness to participate increases with the number of other agents
participating in the collective action). In other words, the utility function is
supermodular, see the definition above.

However, also it is necessary to consider the social network itself (the
communication network in which social bonds determine the directions of
information transfer). Each agent knows about the existence of all other agents in
the network (this fact is common knowledge). The network describes binary
relations ! over the set N: the relation j ! i means that agent i is informed about
the intentions of agent j. Agent i knows only his/her own intentions and also the
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intensions of his/her neighbors B(i) = {j 2 N | j ! i}. So agent i merely knows
that the real state of nature h 2 H belongs to the set of indistinguishable states of

nature PiðhÞ ¼ fðhB ið Þ;uNnB ið ÞÞjuNnB ið Þ 2 fw; xgn�#BðiÞg. Such states form =i ¼
fPiðqÞgh2H, i.e., an informational partition of all admissible states H for agent i.

The strategy of agent i is a function fi: H ! {r, s} such that, for any h, h′ 2 H,
the equality fiðhÞ ¼ fiðh0Þ holds if h, h0 2 P 2 =i. In other words, agent i cannot
discriminate between two states belonging to the same element of the partition =i,
and he/she makes the same decision accordingly. Denote by Fi the set of all
strategies of agent i, F ¼ Q

i2NFi.
The expected utility of agent i for f 2 F is defined by EUi fð Þ ¼P
h2H pðhÞuiðhi; f ðhÞÞ, where p 2 DH are given prior beliefs of agents about their

mutual intentions (a probability distribution over {w, x}n). In the tradition of
Bayesian games [153, 168], these beliefs are common knowledge of all agents.

A vector f is a Bayesian Nash equilibrium [153] in the game Г(!, p) if 8i 2
N; 8ni 2 Fi : ðEUiðf Þ�EUiðni; fNnfigÞÞ: Because the payoff functions are super-
modular, it is possible to show that such an equilibrium always exist.

Minimal sufficient networks. If all agents have rather “optimistic” beliefs, they
will participate in the collective action under any structure of the communication
network. As noted in [47], of major concern are the properties of communication
networks under which the whole4 group of agents prefers participation regardless of
the prior beliefs. Such networks were called sufficient. So, for a sufficient network,
there exists an equilibrium in which all agents decide to participate in the collective
action under any prior beliefs (recall this is possible only if all agents from the
group are willing to do it).

Minimal sufficient networks are remarkable for the absence of redundant com-
munication links. Formally they are defined in the following way. A network ! is
minimal sufficient if it is sufficient and, for any other sufficient network such that
!′ � !, we have the relationship !′ = !. So it does not contain smaller suffi-
cient networks.

In fact, such minimal sufficient networks represent hierarchies of cliques.
A clique is a subset of agents in which each agent directly informs each other
agent. Thus, a clique of the network ! is a set Mk � P such that 8i, j 2 Mk:
i ! j. Any minimal sufficient network partitions the agents in cliques, and there
exists a communication link between cliques in one direction only. A minimal
sufficient network arranges in a social network hierarchy of roles defined by cliques
and the relation !*, namely, leading adopters and followers.

Note that the problem of a minimal structure of communications among the
agents that guarantees desired properties of a social network (as a rule, spanning
tree in a communication digraph, see [3, 213]) arises for many influence models of
social networks—imitation, coordination, Markovian models, etc.

4Although, there exist other equilibria in which only some agents participate in the collective
action and this is beneficial for them.
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Game of thresholds, local common knowledge. Using several examples, the
paper [47] studied a special case Ce1...en of the game-theoretic model as follows.
Agent i decides to participate in a collective action if at least ei agents do so
(threshold). So the payoff function of agent i has the form

ui w; að Þ ¼
1 if ai ¼ r and #fj 2 N : aj ¼ rg� ei;
�1 if ai ¼ r and #fj 2 N : aj ¼ rg\ei;

0 if ai ¼ s:

8<
:

(Here #D denotes the cardinality of a set D.)
Each agent has a specific threshold—an integer value between 1 and n + 1. If the

threshold is 1, then the agent surely participates; 2, surely participates if his/her
neighbor does; and so on. Agent i knows his/her own threshold and also the
thresholds of his/her neighbors only. Besides, the authors [47] actually hypothe-
sized (without explicit statement) that each agent knows the mutual awareness of
his/her neighbors.

Fig. 1.3 Minimal sufficient
network and associated
hierarchy of roles

Fig. 1.4 Hierarchy of roles
in game C1;3;3;4;4;4;4;6;6;9;9;9

Fig. 1.5 Network of game
C3;3;3;3
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Example 1.3 The game C2;2;4;4 (Fig. 1.3).
The agents with threshold 2 form the clique of leading adopters while the ones

with threshold 4 the clique of followers. •

Example 1.4. The game C1;3;3;4;4;4;4;6;6;9;9;9 (Fig. 1.4).
In this example, we have two leading cliques. Note that the agents from the

clique with value 9 should know the threshold of the agent from the clique with
value 1: they participate only if the agents from clique 3 do.

Interestingly, here the cliques are homogeneous in the sense that the agents have
the same thresholds, and the agents with greater threshold occupy the lower hier-
archical level. •

Example 1.5 The game C3;3;3;3 and higher-order beliefs. Consider the game C3;3;3;3

(“square box”, see Fig. 1.5) in which all agents are willing to participate (the corner
values indicate the indexes of agents, not their thresholds):

Here agent 1 knows that agents 2 and 4 have the same threshold 3. However, he/
she is not informed about the threshold of agent 3 and also knows that agent 2 is not
informed about the threshold of agent 4. Due to this uncertainty, agent 1 will not
participate in the collective action, even despite the existing potentiality (his/her
threshold is 3 and the number of other agents willing to participate is 3, as he/she
knows). This reasoning applies to each agent. There are rather many agents willing
to participate and all they know this fact independently; but none of the agents
know that other agents are informed about this. So Example 1.5 illustrates that
first-order knowledge can be insufficient for decision-making, and knowledge of
higher orders is required.

Consider the game C3;3;3;3 with another structure (minimal sufficient network),
see Fig. 1.6.

Agent 1 knows that agents 2 and 3 have the same threshold 3. Moreover, he/she
knows that they are informed about the thresholds of each other and that they are
informed about his/her knowledge about their mutual beliefs, and so on (the local
common knowledge is “All agents 1, 2, and 3 have threshold 3”). The same holds
for agents 2 and 3. As it turns out, this common knowledge is sufficient for their
participation in the collective action because all agents know about the willingness
of each other. Agent 4 also knows this and will participate in the collective action.

This example underlines that the network structure must be the common
knowledge of all agents. In other words, an important role is played by cliques in
which the appearance of locally common knowledge (an awareness structure for a

Fig. 1.6 Minimal sufficient network of game C3;3;3;3 and its hierarchy of roles

32 1 Models of Influence in Social Networks



part of agents) seems quite natural. The information about the players’ willingness
is coming from leading cliques through chains. The agents know the willingness of
other agents but not their actions. Minimal sufficient networks are intrinsic struc-
tures of the game interpreted as hierarchical social roles. Communication networks
facilitate coordination processes in the following way:

(1) by informing each stage about the earlier/preceding stages;
(2) by forming common knowledge for each stage (role). •

Strong and weak links (ties). It is intuitively clear that a network with very
many strong links has small cliques by transitivity: “the friends of my friends
become my friends.” Therefore, in such networks local common knowledge is
formed faster. This happens under rather small thresholds (i.e., the chances that a
group with strong link becomes a leading clique). However, if the thresholds are
large, then local common knowledge in small cliques remains useless and weak
links become dominating: they are running fast through the whole society as well as
accelerating communication and the spread of knowledge. So necessary prerequi-
sites for a collective action are created.

1.2.4 Social Control and Collective Action. Network
Stability

The paper [115] considered the relationship between the mechanisms of social
control, the properties of social networks, and collective actions performed for the
public goods of a whole community of agents. As established therein, the key
factors for agents’ decision-making under conflict of private and public interests are
different types of social control implemented through interpersonal relations in a
social network, namely, behavioral confirmation (an agent follows social expec-
tations) and social selective incentives (an agent receives additional personal goods
from other agents).

More specifically, collective decision-making was modeled by a noncooperative
game with single interaction of n > 2 agents—the structurally embedded public
goods game [115]. Denote by N = {1, …, n} the set of agents; in this model, each
agent i 2 N chooses between participation (ri = 1) or non-participation (ri = 0) in
a collective action. Participation incurs total cost c and also produces additional
good a for each network agent (if c > a, then participation of sufficiently many
agents n* can be profitable: an* > c). Let rij = 1 if there exists an undirected edge
(connection) between agents i and j and rij = 0 otherwise. The communication
graph has no loops and the total number of connections of agent i makes up
ri ¼

Pn
j¼1 rij. Each agent undergoes the influence of several factors through his/her

connections as follows: behavioral incentives from the neighbors with the same
decision (an additive incentive b1 and a proportional incentive b2) and also social

1.2 Common Knowledge. Collective Actions 33



incentives (s from each neighbor). For the sake of simplicity, assume c, a > 0 and
b1, b2, s � 0. Designate as C the set of participants and by D the set of free riders.
Then ri = rid + ric for participant i. The payoffs of agent i from participation and
nonparticipation have the form

piðri ¼ 1Þ ¼ risþ ricb1 þ ric
ri
b2 þ að

Xn
j¼1

rj þ 1Þ

and

piðri ¼ 0Þ ¼ cþ ridb1 þ rid
ri
b2 þ a

Xn
j¼1

rj;

where j 6¼ i.
Therefore, a rational agent benefits from participation if

risþðric � ridÞðb1 þ b2
ri
Þþ a� c:

Again, for simplicity let ri > 0, i 2 N. Then, for all agents, participation in the
collective action is a Nash equilibrium if the network satisfies the property

min
i
frig� c� a� b2

sþ b1
:

Clearly, for any agent nonparticipation is not beneficial if all his/her neighbors
decide to participate. In fact, this means that stronger incentives as well as a higher
minimal node degree of the network increase the probability of successful collective
action.

However, in some cases only a part of agents n* may participate but this col-
lective action is beneficial (under a n* > c) and also forms a Nash equilibrium if
nonempty sets C and D satisfy the following inequalities:

8i 2 C : risþðric � ridÞðb1 þ b2
ri
Þþ a� c;

8j 2 D : rjsþðrjc � rjdÞðb1 þ b2
rj
Þþ a� c:

Whenever there are several Nash equilibria, for each agent choose the equilib-
rium with higher payoff. If the participation and non-participation of all agents are
two Nash equilibria and the number of agents exceeds n*, then the Nash equilibrium
with complete participation is Pareto dominating. If complete and partial partici-
pation are two Nash equilibria, then the former is dominating the latter if the payoff
function possesses the property

34 1 Models of Influence in Social Networks



8j 2 D : ndaþ rjsþ rjcðb1 þ b2
rj
Þ[ c:

In other words, the fewer free riders the Nash equilibrium with partial partici-
pation contains, the rarer its counterpart with complete participation is dominating:
free riders have higher chances to benefit more.

Also the paper [115] discussed the possibility to create and break connections in
a social network. A social network with a given strategy vector is stable if, for any
agent, the break and/or creation of new connections do not improve his/her payoff.
Let a be the cost of connection break and f be the cost of connection creation.

A free rider i 2 D benefits from structural changes that create y new connections
with other free riders and break x old connections with participants if

y b1 þ b2
y ric þ x rid
riðri � xþ yÞ [ x aþ y f :

A participant j 2 C benefits from structural changes that create y new connec-
tions with other participants and break x old connections with free riders if

ðy� xÞsþ y b1 þ b2
y rjd þ x rjc
rjðrj � xþ yÞ [ x aþ y f :

Assume the creation and break of connections incur zero cost. Then the only
stable network is the network in which the sets C and D are fully connected and
have no connections with each other.

A stable network equilibrium was defined in [115] as a strategy profile in which,
for any agent, any combination of changes in his/her actions and connections does
not improve his/her payoff. As proved by the authors, only the equilibria with
complete participation or complete non-participation are stable network equilibria
((s > 0 or b1 > 0 or b2 > 0) and (f = a = 0)).

The model under consideration has some restrictions as follows. First, the
connections between agents are undirected; second, for a given agent the incentives
provided by all his/her neighbors are equivalent; third, only external incentives are
described (each agent is assumed to have no internal incentives); and fourth, the
agents are rational and fully informed (this hypothesis is often inapplicable to large
networks). A promising approach is to limit awareness (e.g., structurally) and/or to
consider the agents of bounded rationality [196].

1.3 Models and Properties of Social Networks

Generally speaking, the presented survey of such an intensively developed field of
investigations as influence modeling in social networks allows to draw the fol-
lowing conclusion. Influence models of social networks are still on their way
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towards becoming an independent discipline of research; today they represent a
synthetic “alloy” of graph theory, game theory, social psychology, social theory of
small groups, theory of Markov chains, mechanism design, theory of multiagent
systems and other disciplines. Nevertheless, it can be said with confidence that in
the coming years models of social networks will form an independent branch of
investigations, attracting more and more scientists in applied mathematics, psy-
chology, economics and sociology. Note that this book has left behind numerous
studies of specific social networks based on the models considered. Even a brief
description of such studies would require a survey of comparable scope.

The results presented in Sects. 1.1 and 1.2 testify that the modern models of
social networks (see their classification in Sect. 1.1.1) are well reflecting many
properties and effects of real social networks as listed in the Introduction.
Tables 1.1 and 1.2 summarize different classes of models (columns) and properties

Table 1.1 Optimization and simulation models of social networks and their properties

Classes of models
properties

Threshold
models

Independent
cascade
models

Models of
percolation
and
contagion

Ising
models

Cellular
automata
models

Markovian
models

Individual
“opinions” (states)
of agents

+ + + + + +

Variable opinions
under an influence
of other network
members

+ + + + + +

Different
significance of
opinions (influence,
trust) of given
agents for other
agents

+ + + • + •

Different degree of
agents’
susceptibility to
influence

+ – – – + –

Indirect influence – – – – – –

Opinion leaders + • – – – –

A threshold of
sensitivity to
opinion variations
of a neighborhood

+ – – – + –

Local groups – • – – – –

(continued)
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Table 1.1 (continued)

Classes of models
properties

Threshold
models

Independent
cascade
models

Models of
percolation
and
contagion

Ising
models

Cellular
automata
models

Markovian
models

Specific social
norms

– – – – – –

Social correlation
factors

• – – – – –

External factors of
influence

+ – – + + –

Stages + – – – • –

Avalanche-like
effects (cascades)

+ + • – – –

The influence of
structural properties
of social networks
on opinion
dynamics,
including
connections,
clustering, local
mediation, and
diameter

+ • – – + –

Active agents – – – – – –

Possible groups and
coalitions of agents

– – – – – –

Incomplete and/or
asymmetric
awareness of
agents,
decision-making
under uncertainty

– – – – – –

Nontrivial mutual
awareness
(reflexion) of
agents

– – – – – –

Game-based
interaction of
agents

– – – – – –

Optimization of
informational
influence

+ + – – • –

Informational
control in social
networks

– – – – – –

1.3 Models and Properties of Social Networks 37



T
ab

le
1.
2

G
am

e-
th
eo
re
tic

m
od

el
s
of

so
ci
al

ne
tw
or
ks

an
d
th
ei
r
pr
op

er
tie
s

C
la
ss
es

of
m
od

el
s
pr
op

er
tie
s

M
od

el
s
of

m
ut
ua
l

aw
ar
en
es
s

M
od

el
s
of

co
or
di
na
te
d

co
lle
ct
iv
e

ac
tio

ns

M
od

el
s
of

co
m
m
un

ic
at
io
n

pr
oc
es
se
s

M
od

el
s

of ne
tw
or
k

st
ab
ili
ty

M
od

el
s
of

in
fo
rm

at
io
na
l

in
fl
ue
nc
e
an
d

co
nt
ro
l

M
od

el
s
of

in
fo
rm

at
io
na
l

co
nf
ro
nt
at
io
n

In
di
vi
du

al
“o
pi
ni
on

s”
(s
ta
te
s)

of
ag
en
ts

+
+

+
+

+
+

V
ar
ia
bl
e
op

in
io
ns

un
de
r
an

in
flu

en
ce

of
ot
he
r

ne
tw
or
k
m
em

be
rs

+
+

+
+

+
+

D
iff
er
en
ts
ig
ni
fi
ca
nc
e
of

op
in
io
ns

(i
nfl

ue
nc
e,
tr
us
t)

of
gi
ve
n
ag
en
ts
fo
r
ot
he
r
ag
en
ts

–
•

•
–

+
+

D
iff
er
en
t
de
gr
ee

of
ag
en
ts
’
su
sc
ep
tib

ili
ty

to
in
flu

en
ce

–
•

•
+

+
+

In
di
re
ct

in
flu

en
ce

•
–

–
–

+
+

O
pi
ni
on

le
ad
er
s

–
–

–
–

+
–

A
th
re
sh
ol
d
of

se
ns
iti
vi
ty

to
op

in
io
n
va
ri
at
io
ns

of
a
ne
ig
hb

or
ho

od
–

–
•

–
–

–

L
oc
al

gr
ou

ps
–

–
+

–
+

•

Sp
ec
ifi
c
so
ci
al

no
rm

s
–

–
–

–
+

•

So
ci
al

co
rr
el
at
io
n
fa
ct
or
s

•
•

•
–

–
–

E
xt
er
na
l
fa
ct
or
s
of

in
fl
ue
nc
e

–
•

–
•

+
+

St
ag
es

–
–

+
–

•
–

A
va
la
nc
he
-l
ik
e
ef
fe
ct
s
(c
as
ca
de
s)

–
–

–
–

•
–

T
he

in
flu

en
ce

of
st
ru
ct
ur
al

pr
op

er
tie
s
of

so
ci
al

ne
tw
or
ks

on
op

in
io
n
dy

na
m
ic
s,
in
cl
ud

in
g

co
nn

ec
tio

ns
,
cl
us
te
ri
ng

,
lo
ca
l
m
ed
ia
tio

n,
an
d

di
am

et
er

•
+

+
+

•
•

A
ct
iv
e
ag
en
ts

•
+

•
•

•
+

Po
ss
ib
le

gr
ou

ps
an
d
co
al
iti
on

s
of

ag
en
ts

–
–

–
–

•
•

(c
on

tin
ue
d)

38 1 Models of Influence in Social Networks



T
ab

le
1.
2

(c
on

tin
ue
d)

C
la
ss
es

of
m
od

el
s
pr
op

er
tie
s

M
od

el
s
of

m
ut
ua
l

aw
ar
en
es
s

M
od

el
s
of

co
or
di
na
te
d

co
lle
ct
iv
e

ac
tio

ns

M
od

el
s
of

co
m
m
un

ic
at
io
n

pr
oc
es
se
s

M
od

el
s

of ne
tw
or
k

st
ab
ili
ty

M
od

el
s
of

in
fo
rm

at
io
na
l

in
fl
ue
nc
e
an
d

co
nt
ro
l

M
od

el
s
of

in
fo
rm

at
io
na
l

co
nf
ro
nt
at
io
n

In
co
m
pl
et
e
an
d/
or

as
ym

m
et
ri
c
aw

ar
en
es
s
of

ag
en
ts
,
de
ci
si
on

-m
ak
in
g
un

de
r
un

ce
rt
ai
nt
y

+
+

+
–

•
+

N
on

tr
iv
ia
l
m
ut
ua
l
aw

ar
en
es
s
(r
efl
ex
io
n)

of
ag
en
ts

+
–

•
–

+
•

G
am

e-
ba
se
d
in
te
ra
ct
io
n
of

ag
en
ts

•
+

•
+

•
+

O
pt
im

iz
at
io
n
of

in
fo
rm

at
io
na
l
in
flu

en
ce

–
–

–
–

+
+

In
fo
rm

at
io
na
l
co
nt
ro
l
in

so
ci
al

ne
tw
or
ks

–
–

–
–

+
+

1.3 Models and Properties of Social Networks 39



(rows) of social networks. The notations are as follows: “+” if a corresponding
model gives an adequate description for a corresponding property and “•” if takes
into account.

The deep analysis of this chapter and also the brief summary in Tables 1.1 and
1.2 indicate that a series of important properties of social networks still have to be
examined through an adequate modeling framework.
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Chapter 2
Models of Informational Control
in Social Networks

In this chapter, we develop and study game-theoretic and optimization models and
methods of informational influence and control in social networks. Section 2.1
considers a model of informational influence with focus on the formation and
dynamics of agents’ opinions in a social network. Opinion dynamics is described by
a Markov process while opinions are calculated using an influence graph. We
introduce the concepts of communities, groups, and satellites. Based on the
resulting influence structure, we prove that the opinions of satellites are defined by
the opinions of groups while the opinions within groups are converging (stabilized)
to the same value.

In Sects. 2.2–2.6 this model of informational influence is employed to design
models of informational control for

– the opinions of social network members (Sects. 2.2, 2.3 and 2.6);
– the reputation of social network members (Sect. 2.4);
– the trust of social network members (Sects. 2.2, 2.4 and 2.5).

As demonstrated below, the stable network state is linear in the control variable.
Next, we define the concept of reputation and consider models of informational
control and confrontation for describing the reputation dynamics of social network
members and examining the role of reputation in informational influence.
Interestingly, the higher is the reputation of an active agent who performs
manipulation, the greater are his/her capabilities to influence the resulting opinion
of all other agents in a social network. Therefore, as follows from the model, an
active agent maximizes his/he reputation by manipulating his/her initial opinions on
each issue in order to guarantee a desired resulting opinion of all social network
members on the last issue. So, in this setup, informational confrontation (a game of
several manipulating agents) is actually reduced to dynamic active expertise with
reputation. Also some approaches to model the strategic and informational reflexion
of agents are analyzed.
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Section 2.7 deals with a model of actions spreading in a social network and an
associated influence calculation method. In this model, a basic element is an action
performed by an agent (network user), which explains the term “actional model.”

Note that the models considered in this chapter well reflect many phenomena
occurring in real social networks (see the Preface).

2.1 Markovian Model of Informational Influence

Below we will study the formation and dynamics of opinions in a social network
using Markov chains: opinion dynamics will be described by a Markov process
while the opinions themselves will be calculated by an influence graph. Generally
speaking, this model follows the tradition of social network modeling with Markov
chains, see [51, 66, 98] and also [180].

The conclusions established within the framework of this model well match the
results of social psychologists (e.g., see [48, 152, 190, 221]). For example, the same
opinion is gradually formed in a group of closely connected vertexes.

Direct and indirect informational influence. Denote by N = {1, 2, …, n} the
set of agents belonging to a social network. Agents are influencing each other in the
network, and their influence levels are defined by a direct influence matrix A of
dimensions n � n. For each agent i, an element aij � 0 specifies his/her degree of
trust to agent j. Throughout the book, we will operate the concepts of influence and
trust as opposite ones in the following sense. The statements “The degree of trust of
agent i to agent j is aij” and “The influence level of agent j on agent i is aij” are
equivalent.

The degrees of trust over a social network can be described by arrows between
different vertexes with appropriate weights. For example, an arrow from agent i to
agent j with a weight aij (see Fig. 2.1) indicates that the degree of trust of agent i to
agent j is aij.

Assume agent i knows only his/her own (ith) row of the matrix A, i.e., whom and
how much this agent trusts.

Accept the normalization condition:

8i 2 N:
Xn
j¼1

aij ¼ 1: ð2:1Þ

In other words, the “total degree of trust” of any agent is 1. This condition guar-
antees that the matrix A is stochastic in rows [70]. Note that each agent can trust
him/herself, which corresponds to the inequality aii > 0.

If agent i trusts agent j while agent j trusts agent k (see Fig. 2.2), then agent k has
indirect influence on agent i (yet the latter may know nothing about the former!).

42 2 Models of Informational Control in Social Networks



This fact motivates us to explore the evolvement of agents’ opinions in a social
network.

Formation and dynamics of agents’ opinions. Assume at some time each
agent has a specific opinion on some issue. The opinion of agent i is described by a
real value x0i ; i 2 N. So the opinions of all agents in the network form a column
vector of opinions x0 of dimension n.

Agents are interacting with each other by exchanging their opinions. As a result,
the opinion of each agent varies in accordance with the opinions of other agents he/
she actually trusts. Let this variation be linear in the following sense. At a subse-
quent time, the opinion of agent i is given by the weighted sum of the opinions of
other agents he/she trusts:

xsi ¼
X
j

aijxs�1
j ; i 2 N: ð2:2Þ

Here s denotes time and the weight coefficients are the degrees of trust aij [94].
As easily seen, in the vector representation the first variation of the opinion is the

product of the direct influence matrix and the initial opinion vector, i.e., x1 = A x0.
For the subsequent times, we may write by analogy x2 ¼ Að Þ2x0; x3 ¼ Að Þ3x0, and
so on.

If this interaction of agents takes place for a sufficiently large period, their
opinions are stabilized, converging to the resulting opinion X ¼ lims!1 xs (the
existence conditions will be discussed below).

The resulting influence matrix is the limit A1 ¼ lims!1ðAÞs (the existence
conditions will be also discussed below). Then we have the relationship

X ¼ A1x0; ð2:3Þ

where x0 denotes the initial opinion vector, A∞ is the resulting influence matrix, and
X gives the resulting opinion vector.

The structure of indirect trust (influence) is well described by a directed graph in
which vertexes correspond to different agents and arrows between them to the
degrees of trust. (From a given agent an arrow comes to those agents whom he/she
trusts; if the degree of trust is zero, no arrow.)

Fig. 2.1 Direct influence
(trust)

Fig. 2.2 Indirect trust
(influence)
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Example 2.1 An example that shows the transformation of direct influences into
the resulting ones can be observed in Fig. 2.3.

In accordance with Fig. 2.3b, the resulting influence of network agents is con-
centrated in two agents, indexes 3 and 6. These two agents actually determine the
opinion of the whole social network. •

We will need several concepts to describe the structure of the resulting trust
(influence) in the general case as follows.

Groups and communities. A community is a set of agents undergoing no
influence from the agents outside it. Formally, a community is a subset S � N such
that 8i 2 S, 8j 2 NnS: aij ¼ 0. Denote by @ the set of all such subsets.

A group is a community of interacting agents in which each agent influences or
undergoes influence from each other agent in it, directly or indirectly. Formally, a
group is a minimal community in which it is impossible to extract another com-
munity, i.e., a set Q 2 @ such that :9S 2 @ðS � QÞ.

A satellite is an agent who undergoes the influence of agents from other groups
but does not influence any of them (any agent from one of these groups). This is an
agent not belonging to any group.

Therefore, each agent either belongs to a single group or is a satellite. At the
same time, an agent may belong to several “nested” communities.

Figure 2.4 illustrates a group, community and satellites for the social network of
Example 2.1. Here we have a unique group of agents 3 and 6; the other agents
represent satellites.

Structure of resulting influences. We will describe the structure of resulting
influences using well-known results of finite Markov chains (e.g., see [122]). To
this end, establish the following correspondences between the currently used con-
cepts and the concepts of Markov chains:
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Fig. 2.3 Transformation of direct influence (a) into resulting influence (b)

44 2 Models of Informational Control in Social Networks



• an agent—a state of a Markov chain;
• the degree of trust of an agent—the probability of transition from one state to

another in a Markov chain (transition rate);
• the direct trust matrix—the transition rate matrix;
• indirect trust—reachability;
• a group—an irreducible class of essential states;
• a satellite—an inessential state.

Further exposition relies on Condition 1 unless otherwise stated: in each group
there is at least one agent i 2 N such that aii > 0. That is, in each group at least a
single agent trusts him/herself with some degree.

In this case, each group corresponds to an irreducible aperiodic class in theory of
Markov chains. And the following results are immediate from the facts established
for Markov chains.

Proposition 2.1 There exists the resulting influence matrix—the limit
A1 ¼ lims!1ðAÞs.
Proposition 2.2 The opinions of all agents are stabilized, converging to the limit
X ¼ lims!1 xs.

Proposition 2.3 The resulting influence of any satellite on any agent is 0.
Particularly, the initial opinions of satellites do not affect the resulting opinions of
any agents.

Fig. 2.4 Community, group
and satellite for social
network of Example 2.1
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Proposition 2.4 The rows of the resulting influence matrix that correspond to the
members of one group coincide. Particularly, the resulting opinions of these agents
coincide, i.e., each group has a common opinion (collective opinion).

Note that Proposition 2.4 agrees with the observations of social psychologists:
under informational influence, the members of a group reach consensus.

Consequently, the structure of resulting influences has the following form, see
Fig. 2.5. There are several groups in each of which the resulting opinions of agents
coincide (consensus is reached) independently of the initial opinions of other agents
not belonging to a given group. The other agents are satellites and their resulting
opinions are completely defined by the opinion of one or several groups.

As mentioned earlier, each agent from a group is an essential state in the
terminology of finite Markov chains1 [70, 105, 122]. A well-known fact of this
theory is that the transition matrix A of a Markov process with several irreducible
classes of essential states (here—groups) can be written as

A ¼
A1 0 0 0

0 . .
.

0 0
0 0 Ak 0
Q1 � � � Qk R

0
BBB@

1
CCCA;

where Al gives the transition matrix within group l (irreducible stochastic matrix);
k is the number of irreducible classes; Ql is a matrix that describes the influence of
group l on the satellites; the total influence of group l on satellite j is the sum of
indexes in the corresponding row of the matrix Ql.

If a finite Markov process reaches some essential state from a class Al, then only
the essential states from this class are possible at subsequent steps. In addition, the
process can return to this essential state only after a finite number of steps (which
does not exceed the number of states in this group). The minimal number of steps in
which the process returns to an essential state after leaving it is called the state
period. In the social network model under consideration, this is the length of the
minimal cycle in the graph defined by the matrix Al that passes through the cor-
responding agent (essential state).

The greatest common divisor for the periods of all essential states from a given
class is called its cyclicity dl [122]. As a matter of fact, cyclicity plays a crucial role:
the opinions within a separate group l are converging if and only if the mutual
influence matrix for the agents from this group is acyclic (or primitive in the
Kolmogorov sense [70]), i.e., dl = 1.

It was demonstrated in [94] that the opinions are converging within a separate
group if it contains at least one agent trusting him/herself with some degree. Really,
the mutual influence matrix of this group is acyclic because the minimal cycle for
the agent has length 1. The matrix A is called simple if all its irreducible classes are

1The matrix analysis of the structure of resulting influences was performed by N.A. Korgin, Dr.
Sci. (Eng.).
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acyclic. A simple matrix A is called regular [70, 122] if it contains a unique
irreducible class.

For the sake of simplicity, we will assume sometimes (with special mention) that
all elements of a stochastic direct influence matrix A are strictly positive.
A sufficient condition of regularity is that all members of a social network form a
single group. Note that, even under such a strong assumption, there is no guarantee
that the opinions of all agents converge to the same value (consensus) in finite time.

For a regular matrix A, each row of the matrix A∞ represents the same proba-
bilistic positive vector a ¼ ða1; . . .; anÞ:

Pn
i¼1 ai ¼ 1, ai [ 0, 8i 2 f1; . . .; ng.

Moreover, this vector satisfies the matrix equation a A = a, which has a unique
solution since the matrix A is regular [70, 122]. The vector a is called the final or
limit distribution of a regular Markov chain [122].

Given an initial opinion vector x0, each agent has the resulting opinion a x0.
Therefore, within the framework of the current model, the value ai can be treated as
the influence level of agent i: it determines how much the resulting opinion reflects
the initial one. Also an obvious and interesting fact is that 8s ¼ 1; 2; . . .: ax0 ¼ axs,
where xs ¼ ðAÞsx0.

So, for any a 2 <1, we may define the domain of attraction—the set of initial
opinions from which this value can be reached as the group consensus

X ¼ a
1
..
.

1

0
@

1
A:

XðaÞ�<n�1 ¼ x0 2 <n: ax0 ¼ a
� �

:

Moreover, 8a; b 2 <1, a 6¼ b:XðaÞ \XðbÞ ¼ £ (from any initial opinion vec-
tor, it is possible to reach only a single vector of resulting opinions). This means
that for different resulting opinions the reachability spaces are parallel. Geometrical
interpretations of this statement have close connection with the condition figuring in
Proposition 2.6), see Sect. 2.2.

Fig. 2.5 Structure of
resulting influence graph
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As a digression note that the problem to find the relative influence of agents in a
social network (analysis of the equations a A = a) is very similar to the PageRank
problem, see the surveys in [130, 131, 213].

This leads to the question about the awareness of agents in a current situation.
Does an agent know that he/she is a member of a group or a satellite? A reasonable
approach proceeds from the hypothesis that, at each time, each agent knows his/her
own opinion, the opinion of those agents he/she trusts as well as his/her degree of
trust to these agents (direct trust). If an agent knows that his/her resulting opinion is
different from the opinion of those he/she trusts, then this agent is a satellite and
also knows this fact. At the same time, if the resulting opinions of an agent and
those he/she trusts coincide, then this agent can be a member of a group or a
satellite.

Formation and dynamics of agents’ opinions: some examples. In this para-
graph, we will consider several typical examples illustrating the formation of
agents’ opinions.

Our analysis starts with the “limiting” cases.

Example 2.2 Agent i 2 N trusts him/herself only, i.e., 8j 6¼ i: aij ¼ 0 and aii = 1.
The opinions of such an agent remain invariable with the course of time: xsi ¼ x0i ,
s ¼ 0; 1; . . .. •

Example 2.3 To some degree an agent trusts all other agents, who have the same
opinion and trust nobody except themselves. Then the opinion of this agent is
converging to the opinion of the other agents, which remains invariable. •

Example 2.4 Each of two agents absolutely trusts the opponent (a12 = a21 = 1).
Then Condition 1 above fails, and the opinions of these agents are fluctuating with
period 2. •

Example 2.5 For two agents, the situation is symmetric: a11 = a22 < 1. The initial
opinions of agents 1 and 2 are 0 and 1, respectively. Then both agents have the
same resulting opinion 0.5, and the maximal rate of convergence takes place under
the condition a11 + a22 = 1. •

Example 2.6 A social network is a complete graph in which all agents have the
same degree of trust to themselves and others. Then the resulting opinion of all
agents is the arithmetic mean of their initial opinions. •

Example 2.7 A social network is a linear chain of agents.

A. Agent 9 trusts him/herself only; each of the other agents trusts him/herself and
the succeeding agent, ai,i+1 = 0.5. Then a damping wave of opinions is running
over the chain, i.e., the opinion of agent i at a time s has the form
xsi ¼ 0:5 xs�1

i þ 0:5 xs�1
iþ 1. The resulting opinions are the same,2 see Fig. 2.6

2The networks and opinion dynamics in this and some other examples below were obtained by
simulation modeling.
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(in this example as well as in the subsequent examples of Sect. 2.1, agents are
numbered starting from 0).

B. Each agent trusts him/herself, ai,i = 0.5. For agent 0, a0,1 = 0.5; for agent
n − 1, an−1,n−2 = 0.5; for all other agents, ai,i−1 = 0.25 and ai,i+1 = 0.25. Then

the resulting opinions coincide and are given by X ¼ 1
n�1 0:5 x0

0
þ 0:5 x0n�1 þ

�
Pn�2

i¼1 x0i

�
. (Figure 2.7 shows the initial and resulting opinions as well as the

degrees of trust for a network of 10 agents.) •

Example 2.8 A social network is a ring.

A. Each agent trusts him/herself, ai,i = 0.5, and also the next agent in the ring, ai,
i+1 = 0.5. Then the resulting opinions coincide and are given by X ¼ 1

n

Pn�1
i¼0 x0i

(see Fig. 2.8).
B. For each agent i, ai,i = 0.5, ai,i+1 = 0.25, and ai,i−1 = 0.25. Then the resulting

opinions coincide and are given by X ¼ 1
n

Pn�1
i¼0 x0i (see Fig. 2.9). •

Example 2.9 A social network is a star.

A. All agents trust the center, ai,0 = 0.5, and also themselves, ai,i = 0.5. The center
of this star (agent 0) trusts only him/herself, a0,0 = 1.0. Then the resulting
opinions of the agents are the initial opinion of the center, X ¼ x00 (see
Fig. 2.10).

B. The center trusts him/herself, a0,0 = 0.5, and also the periphery agents,
a0;i ¼ 0:5= n� 1ð Þ. In turn, the latter trust themselves, ai,i = 0.5, and also the
center, ai,0 = 0.5. Then the resulting opinions coincide and are given by X ¼
0:5x00 þ 0:5

n�1

Pn�1
i¼1 x0i (see Fig. 2.11). •

Fig. 2.6 Illustration for Example 2.7, case A
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Example 2.10 A social network is a complete graph. Each agent trusts him/herself,
ai,i = 0.5, and also other agents, ai,j = 0.5/(n − 1). Then the resulting opinions of all
agents coincide and are given by X ¼ 1

n

Pn�1
i¼0 x0i (see Fig. 2.12). •

Example 2.11 A social network consists of two complete graphs (of n and
m agents, respectively). In the first graph, each agent trusts him/herself, ai,i = 0.5,

Fig. 2.7 Illustration for Example 2.7, case B
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and 8j 6¼ i: aij ¼ 0:5
n�1. The second graph is connected with the first through an

incoming arc. Then the resulting opinions of all agents coincide and are given by
X ¼ 1

n

Pn�1
i¼0 x0i (see Fig. 2.13). •

Fig. 2.8 Illustration for Example 2.8, case A
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Example 2.12 A social network is a regular tree.

A. The agent at the root vertex (agent 0) trusts him/herself only while the other
agents trust themselves and the parent agent, ai,i = 0.5. Then the resulting
opinions of all agents coincide and are given by X ¼ x00 (see Fig. 2.14).

Fig. 2.9 Illustration for Example 2.8, case B
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B. Each vertex in the tree has m descendants; each agent trusts him/herself,
ai,i = 0.5, and also the parent agent and the descendants. Denote by Nl the set of
leaves, by Nint the set of intermediate vertexes, and by r the root, i.e.,
N ¼ Nint [Nl [frg. Then, as shown in Fig. 2.15,

X ¼ mx0r þðmþ 1ÞPi2Nint
x0i þ

P
i2Nl

x0i
mþðmþ 1Þ Nintj j þ Nlj j

•

Example 2.13 Each of three agents trusts him/herself and others with some degree.
The agents have different initial opinions. Then the opinions are converging to the
same resulting opinion for all agents.

This conclusion can be illustrated with an experiment conducted by well-known
Turkish–American psychologist Sherif [152].

As a participant in one of Sherif’s experiments, you might have found yourself
seated in a dark room. Fifteen feet in front of you a pinpoint of light appears. At
first, nothing happens. Then for a few seconds it moves erratically and finally
disappears. Now you must guess how far it moved. The dark room gives you no
way to judge distance, so you offer an uncertain “six inches.” The experimenter
repeats the procedure. This time you say, “Ten inches.” With further repetitions,
your estimates continue to average about eight inches. The next day you return to
the darkened room, joined by two other participants who had the same experience
the day before. When the light goes off for the first time, the other two people offer
their best guesses from the day before. “One inch,” says one. “Two inches,” says
the other. A bit taken aback, you nevertheless say, “Six inches.” With repetitions of
this group experience, both on this day and for the next two days, will your

Fig. 2.10 Illustration for Example 2.9, case A
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responses change? The Columbia University men whom Sherif tested changed their
estimates markedly. A group norm typically emerged. The norm was false. Why?
The light never moved! •

Fig. 2.11 Illustration for Example 2.9, case B
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Fig. 2.12 Illustration for Example 2.10
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Example 2.14 Five of six agents trust only themselves while agent 6 him/herself
and also all other agents to some degree. The initial opinions of agents 1–5 are 0; of
agent 6, 1. Then with the course of time the opinion of agent 6 will converge to that
of the other agents (0), which will remain invariable.

This conclusion is well illustrated by the Asch experiment [152].
You are seated sixth in a row of seven people. The experimenter explains that

you will be taking part in a study of perceptual judgments, and then asks you to say
which of the three lines matches the standard line. You can easily see that it’s line 2.
So it’s no surprise when the five people responding before you all say, “Line 2.”
The next comparison proves as easy, and you settle in for what seems a simple test.
But the third trial startles you. Although the correct answer seems just as clear-cut,
the first person gives a wrong answer. When the second person gives the same
wrong answer, you sit up in your chair and stare at the cards. The third person

Fig. 2.13 Illustration for Example 2.11
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agrees with the first two. Your jaw drops; you start to perspire. “What is this?” you
ask yourself. “Are they blind? Or am I?” The fourth and fifth people agree with the
others. Then the experimenter looks at you. Now you are experiencing an

Fig. 2.14 Illustration for Example 2.12, case A

Fig. 2.15 Illustration for Example 2.12, case B
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epistemological dilemma: “What is true? Is it what my peers tell me or what my
eyes tell me?” Dozens of college students experienced that conflict in Asch’s
experiments. Those in a control condition who answered alone were correct more
than 99% of the time. Asch wondered: If several others (confederates coached by
the experimenter) gave identical wrong answers, would people declare what they
would otherwise have denied? Although some people never conformed,
three-quarters did so at least once. All told, 37% of the responses were conforming
(or should we say “trusting of others”). •

Therefore, these two examples well match the observations the social
psychologists.

Let us draw some intermediate conclusions. It should be acknowledged that the
Markovian model (basic model) represents perhaps the simplest model of influence
in social networks with reputation of agents. Possible extensions of this model are
obvious: reject the hypothesis about graph’s completeness; define a more compli-
cated relationship between trust/influence and reputation; consider the opinions of
agents with weights depending on the deviations from some average opinion; take
into account the mutual assessments of agents; and so on. The basic model will be
employed below even despite inherent simplicity: it yields a series of analytic
solutions for informational control and confrontation in social networks.

Note that multinetworks form another promising direction of informational
influence modeling in social networks, which proceeds from the following idea.
Each subject is a member of several (real and/or virtual) social networks simulta-
neously. For example, online social network Odnoklassniki popular in the RuNet
contains the subnetworks of graduates of particular colleges or universities, the
subnetworks of people with particular hobby, and so on. Actually everybody has
certain social roles in different social networks (job, family, friends, etc.). A formal
description of a multinetwork is a set of subgraphs on the same set of vertexes. How
are these networks intersecting in the mind of a person? This question has not been
given an adequate answer so far. For associating different networks with inter-
secting (or even coinciding) sets of participants, we may hypothesize that each
agent needs some time for participation, which is limited. So the multinetwork
effects can be described with a certain time allocation model for an agent.

2.2 Informational Control and Opinions of Network
Members3

Static model of informational control. With the basic equation that connects the
initial and resulting opinions of all agents (see Formula (2.2) of Sect. 2.1), we may
pose and solve a control problem—influence the social network agents in order to
form necessary opinions. For preserving additivity, assume a control subject

3This section was written jointly with I.N. Barabanov, Cand. Sci. (Phys.-Math.).
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(Principal) knows the influence (trust) matrix. An informational influence (control)
is that the Principal modifies the initial opinion vector x0 by “adding” a control
vector u 2 ℜn. In fact, control means that the opinion of agent i is changed from xi
to xi + ui, i 2 N.

Suppose ui 2 Ui; i 2 N (this constraint has clear practical interpretations).
Denote U ¼ Qi2N Ui.

Then the resulting opinions are determined by the equation

X ¼ A1 x0 þ u
� �

; ð2:4Þ

or, in the component-wise form,

Xui ¼
X
j2N

A1
ij ðx0j þ ujÞ ¼

X
j2N

A1
ij x

0
j þ

X
j2N

A1
ij uj; i 2 N:

So the resulting opinion of agent i is the sum of his/her “undisturbed” resulting
opinion

P
j2N A1

ij x
0
j and the changes

P
j2N A1

ij uj caused by control. Note that due to
(2.4) the “stable” state of a social network is linear in the control vector [94].

Let the Principal’s goal function U X; uð Þ—the control efficiency criterion—
depend on the resulting opinions of the agents and also on the control vector. Then
the control problem is to choose an admissible control vector that maximizes the
efficiency criterion

UðA1 x0 þ u
� �

; uÞ ! max
u2U

:

In accordance with Propositions 2.1–2.4, it makes no sense to influence the
opinions of satellites. So, for a given trust matrix, we can tell which agents should
be subjected to informational control.

Following the tradition of organizational systems control [165], we can separate
out two additive components in the Principal’s goal function:
U X; uð Þ ¼ H Xð Þ � c uð Þ, where H(�) is the Principal’s payoff (income) depending
on the resulting opinions of the agents4 and c(�) is the cost of control (in some
models, c ¼ c x0; uð Þ would be more appropriate).

Example 2.15 Let the opinions of different agents reflect their degree of “assur-
ance” in what the Principal would like to persuade them (support a given candidate
in elections, purchase a certain good, make some decision, etc.). Then possible
income functions H(�) are the following:

4In reflexive game theory [168], the actions of different subjects are often determined by their
awareness (available information). Therefore, assuming this dependence known, we can pass from
the Principal’s preferences that depend on agents’ actions (which seems quite natural) to the
Principal’s preferences that depend on the awareness (i.e., opinions) of the agents.
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(a) 1
n

P
i2N Xi, the average opinion of all agents;

(b)
P

i2N kiXi, the weighted opinion of all agents with weights ki � 0,P
i2N ki = 1;

(c) nh ¼ i 2 NjXi � hf gj j, the number of agents whose opinions exceed a threshold
h 2 [0, 1] (in threshold voting, the share of such agents);

(d) mini2N Xi, the worst opinion among all agents and so on, depending on problem
statement and interpretations. •

Example 2.16 Let H Xð Þ ¼ 1
n

P
i2N Xi and assume the Principal’s cost is uniform

and linear in the control vector, i.e., c uð Þ ¼ b
P

i2N ui (in essence, b gives the cost
of a unit change in any agent’s opinion) while the Principal’s resources are limited
by a value R � 0:

b
X
i2N

ui �R: ð2:5Þ

In this case, the control problem becomes the following linear programming
(LP) problem:

1
n

X
i2N

X
j2N

A1
ij x

0
j þ

X
i2N

X
j2N

A1
ij uj

 !
� b

X
i2N

ui ! max
fui � 0g;ð2:5Þ

:

Designating Fj ¼ 1
n

P
i2N A1

ij ; j 2 N, we write it as

X
j2N

ðFj � bÞuj ! max
fui � 0g;ð2:5Þ

: ð2:6Þ

The solution of (2.6) is obvious—all the resources should be allocated on
changing the opinion of an agent with the maximal value Fj. This solution can be
interpreted as follows. In the final analysis, the value Fj reflects the average degree
of resulting trust to agent j for all other agents. This characteristic will be called the
influence level of agent j. All the resource should be utilized to control the agent
most trusted by other agents.

This property of the solution of problem (2.6) is caused by the fact that, like the
linear programming problem, it has only one constraint (2.5). We can consider a
more complex situation by assuming Ui = [0, Ri]. For sufficiently small values {Ri}
(e.g., not exceeding the thresholds above which the agents or some safety systems
are detecting external influences), this model can be treated as hidden control (see
some illustrative examples of such control in [168]). Then a corresponding analog
of problem (2.6) has the following solution: arrange the agents in the decreasing
order of Fi and sequentially allocate the maximal amount Ri to them until constraint
(2.5) becomes crucial. The last agent who receives resources may get them in a
smaller amount than the maximal possible. •
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Finally, we will discuss promising lines of further research on opinion control
social networks.

First, the problem considered in Example 2.16 can be generalized in many
directions that correspond to certain setups of media planning (in particular, an
optimal choice of informational events) and informational resource allocation in
advertising, marketing, informational warfare, informational safety, and so on
[126].

Second, it seems reasonable to study more complex (in particular, nonlinear)
dynamic relationships between the opinions of some agents and the influence of
other agents and the Principal (see the classification of networks in the
Introduction).

Third, the matrix A∞ can be employed for calculating the “influence indices” of
agents in other ways, different from the influence level defined above, see [5, 63,
120, 189]. Using certain heuristics and exact solutions with these indices, we may
determine top-priority agents for control.

Fourth, it is interesting to solve the controllability problem—find a set of
reachable states for a system under given control constraints, see below.

Fifth, due to the additive property (2.4), we can state and solve dynamic prob-
lems of finding optimal sequences of informational influences.

Sixth, there are obvious practical interpretations for the inverse problem—find a
set of controls (or “minimal” constraints imposed on them) under which a system
reaches a given state (or a set of such states), i.e., form required opinions of agents.

Finally, the framework of this model can be used for stating and solving
informational safety problems: find optimal protection against informational
influences on the agents in a social network.

Thus, we have considered a model of informational influence in which the
Principal is forming the initial opinions of all agents one-time. Of major interest is
to study the capabilities of informational control during several steps. Further
analysis deals with such a model [11].

Dynamic model of informational control: analysis. To proceed, consider the
case of dynamic informational control as follows. Assume the Principal can
influence the opinions of a certain subset M � N of agents (called the agents of
influence), not only at an initial time but also at subsequent times. Denote m = |M|.

Without loss of generality, let agents 1, 2, … m be those of influence. Designate
as uk ¼ ðukj Þj2M ; k ¼ 0; 1; . . ., the control vector at a time k and consider the

matrix B ¼
1

. . .
1

0

0
B@

1
CA of dimensions n � m.

Proposition 2.5 Let all elements of the stochastic direct influence matrix A be
strictly positive and the controls be unlimited. Then any value of the resulting
opinions of the social network members is reachable as consensus in the presence
of at least one (arbitrary) agent of influence.
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This result follows immediately from the fact that, under the strictly positive
elements of the matrix A, all rows of the matrix A∞ are identical and have no zero
elements (as mentioned earlier, the column sums of this matrix describe the
influence levels of corresponding agents) [76]. In accordance with Formula (2.4),
e.g., for any value 1

n

P
i2N Xi, we may easily find an appropriate control vector.

Assuming that at each time (including zero) the control vector is applied before
opinions exchange, write the equation of opinion dynamics in the matrix form as
follows [cf. (2.4)]:

xkþ 1 ¼ A xk þB uk
� 	

; k ¼ 0; 1; . . . : ð2:7Þ

This is a difference equation describing a discrete-time linear control system
[96]. Its solution with a given initial condition (an analog of the solution of the
Cauchy problem in the continuous-time case) has the representation

xk ¼ Akx0 þ
Xk�1

s¼0

Ak�sBus; k ¼ 1; 2; . . . : ð2:8Þ

For system (2.7), construct the controllability matrix U0 ¼ B0 AB0. . .An�1B0½ 	,
where B0 ¼ AB.

For the time being, assume there are no control constraints, i.e., Uj ¼ R1; j 2 M.
Then, the reachability of an arbitrary state xT of the linear system (2.7) in
T (T � n) times comes to the nondegeneracy of the pair of matrices A and AB or,
equivalently, to the equality rank U0 = n [96], where rank indicates matrix rank.
This equality can be verified in each specific case using the well-known results of
the theory of discrete control systems.

If the Principal’s preferences depend on the resulting opinions of the agents only,
then the problem can be simplified via reduction to the static case.

Proposition 2.6a Let the Principal apply the controls u0; . . .; ul; l\þ1. As
t ! +∞, the resulting opinions of all agents do not change if the same controls (in
absolute value) actions were applied at any other finite times.

Proposition 2.6b Let the controls be unlimited. Then, for any finite sequence of the
control vectors u0; . . .; ul; l\þ1, there exists a control vector v at the initial
(zero) time that leads to the same resulting opinions of the agents.

Proposition 2.6c Let the controls be unlimited and

spanðU0Þ� span Alþ 1B
� �

;

where span(�) indicates the linear hull of the matrix columns.
Then, for any finite sequence of the control vectors u0; . . .; ul; l\þ1, and the

realized state xl + 1 of the social network, there exists a control vector v̂ at the initial
(zero) time that leads to the same network state xl + 1 at the time l + 1.
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Proof of Propositions 2.6a–2.6b Using (2.4), (2.7) and the equality A∞ A = A∞,
we have:

X ¼ A1 . . .A A A x0 þB u0
� �þB u1

� �þB u2
� �þ � � � þB ul

� 	
¼ A1 x0 þB u0

� �þA1Xl
s¼1

Bus:
ð2:9Þ

Denoting

v ¼
Xl
s¼0

us ð2:10Þ

gives X = A∞ (x0 + B v), which was to be established.

Proof of Proposition 2.6c In accordance with (2.8), we may write xlþ 1 ¼
Alþ 1 x0 þBu0½ 	 þ Pl

s¼1 A
l�sþ 1B us. On the other hand, it is required to determine a

vector v̂ such that xlþ 1 ¼ Alþ 1 x0 þBv̂½ 	. Under the hypotheses of Proposition 2.6c,
by the Kronecker–Capelli theorem we can find the vector v̂ as the solution of the
following system of linear algebraic equations:

Alþ 1Bv̂ ¼ Alþ 1B u0 þ
Xl
s¼1

A1�sB us:

Corollary 2.6.1 Let the controls be unlimited and the Principal’s preferences
(efficiency criterion) depend only on the resulting opinions of the agents and the
sum of controls over the agents and times. Then, for any finite sequence of the
control vectors, there exists vector (2.10) of the initial controls of at least the same
efficiency.

Therefore, under the hypotheses of Corollary 2.6.1, the time-dependent control
gives nothing new in comparison with the static case. We emphasize that this
result can be fruitful for cognitive map models (see [158] for a discussion of control
problems on cognitive maps). Therefore, an essential assumption states that the
Principal’s preferences depend on the agents’ opinions at a finite number T < +∞
of the first times of their interaction. This assumption will be accepted for further
exposition.

Let us introduce a series of important definitions. The influence level of agent j at
a time t is the sum wt

j ¼
P

i2N ðAÞtij: The total opinion of all agents at a time t is the
sum

P
i2N xti. Assume the Principal applied controls u0, …, ul. The total control is

the sum
Pl

n¼0

P
j2M unj .

For convenient calculations, construct the vector C ¼ 1 1. . .1k k|fflfflfflfflffl{zfflfflfflfflffl}
n

and write these

characteristics in matrix form: wt ¼ C At as a row vector of dimension n that
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consists of the influence levels of all agents; xtR ¼ C xt as the total opinion of all
agents at a time t; uR ¼Pl

n¼0 C Bun as the total control.

Proposition 2.7 Let the controls be nonnegative: utj � 0; j 2 M; t ¼ 0; 1; . . .. If the
Principal tries to reach the maximum total opinion of all agents at the time T with a
given total control, then it suffices to apply a single control at the time t* on a single
agent j* of maximal influence:

ðj
; t
Þ 2 Arg max
j2M;t2f0;...;T�1g

wT�t
j : ð2:11Þ

Proof of Proposition 2.7 The opinion vector at the time T has the form [see (2.8)]:

xT ¼ ATx0 þ
XT�1

t¼0

AT�tBut; T ¼ 1; 2; . . .

As before, denote the total influence by

uR ¼
XT�1

t¼0

X
j2M

utj ¼ CB
XT�1

t¼0

ut:

Let ðj
; t
Þ be a pair (agent, time) that maximizes the agent’s influence level, i.e.,

ðj
; t
Þ 2 Arg max
j2M;t2f0;...;T�1g

wT�t
j :

The total opinion of the agents at the time T satisfies the following chain of
relationships:

xTR ¼
X
i2N

xTi ¼
X
i2N

ðATx0Þi þ
XT�1

t¼0

X
i2N

ðAT�tButÞi ¼ CATx0 þ
XT�1

t¼0

CAT�tBut

¼ wTx0 þ
XT�1

t¼0

wT�tBut �wTx0 þ max
j2M;t2f0;1;...T�1g

wt
j

XT�1

t¼0

CBut

¼ wTx0 þwt

j
uR:

On the other hand, the controls ut


j
 ¼ uR; utj ¼ 0 j 6¼ j
; t 6¼ t
ð Þ; turn this

inequality into equality. The proof of Proposition 2.7 is complete.
A result similar to Proposition 2.7 holds if the Principal’s goal function is

partially monotonic in the agents’ opinions at any time over the planning horizon
and the constraints are imposed on the individual controls instead of the total
control. In this case, the optimal controls lie on the boundary of the admissible
control set and are applied one-time.
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The situation gets complicated if the Principal’s goal function is not partially
monotonic in the agents’ actions. Then the dynamic optimal informational control
design comes to a certain optimization problem depending on the structure of the
Principal’s goal function. Such optimization problems can be solved numerically in
each particular case. The linear property of the controlled system [see (2.8)] is an
essential factor that simplifies the analysis.

The influence levels of agents may have considerable variations with the course
of time, as illustrated by the following example.

Example 2.17 A social network consists of three agents with the influence matrix

A ¼
0 1 0
0 1� a a
0 0 1

0
@

1
A;

where a 2 (0, 1) is a constant. This network is defined by the directed graph in
Fig. 2.16.

The network has the following structure.

(1) Agent 1 absolutely trusts agent 2.
(2) Agent 2 trusts agent 3 with the degree a and also him/herself with the degree

(1 − a).
(3) Agent 3 absolutely trusts him/herself.

As easily checked,

At ¼
0 ð1� aÞt�1 1� ð1� aÞt�1

0 ð1� aÞt 1� ð1� aÞt
0 0 1

0
@

1
A and A1 ¼

0 0 1
0 0 1
0 0 1

0
@

1
A:

Calculate the influence levels of different agents:wt
1 ¼ 0;wt

2 ¼ ð2� aÞð1� aÞt�1;

wt
3 ¼ 3� ð2� aÞð1� aÞt�1:
So the influence level of agent 2 is monotonically decreasing from (2 − a) to 0;

of agent 3, monotonically increasing from (1 + a) to 3. In particular, this means that
the opinion of agent 3 is dominating on infinite planning horizon while the opinions
of agents 1 and 2 become insignificant. If the Principal seeks to maximize the total
opinion of all agents, he/she should apply informational control to agent 3.

1

1–α 1

1 2 3
α

Fig. 2.16 Social network
from Example 2.17
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However, the situation may change dramatically on finite time horizons. For any
t < ∞, there exists an interval of sufficiently small values a under which agent 2 is
more influential than agent 3 on the whole horizon [0, t]. •

Example 2.18 The Principal is interested in an optimal control for the social net-
work from Example 2.17. It can be calculated by comparing the values wt

2 and wt
3

on a given finite planning horizon [0, t].
If wt

2 [wt
3, then the maximal possible influence should be exerted on agent 2 at

the time s = t − 1; if wt
2\wt

3, on agent 3 at the time s = 0 (in the case wt
2 ¼ wt

3,
both influences mentioned are optimal). •

Now, we formulate the dynamic problem of optimal informational control
design.

Dynamic model of informational control. Design. In the general case, the
design problem is formulated as follows. Introduce the following notations: y ¼
Y xð Þ 2 <k as the vector of observable states of a social network; Y :<n ! <k as a
given function, k � n; T as a planning horizon; x1;T ¼ x1; x2; . . .; xTð Þ as a tra-
jectory of the network states; y1;T ¼ y1; y2; . . .; yTð Þ as a the trajectory of the
observable network states; u yð Þ:<k ! U as a control law; u1;T ¼
u y1ð Þ; u y2ð Þ; . . .; u yTð Þð Þ as a sequence of controls; finally, F(y1,T, u1,T) as a control
efficiency criterion.

Let the initial observed state of the social network be known. The general
dynamic problem of optimal positional informational control design for the discrete
system (2.7) is to determine an admissible control law that has the maximum
efficiency:

F y1;T x1;T u1;T
� �� �

; u1;T
� �! max

uð�Þ
: ð2:12Þ

The general dynamic problem of optimal program informational control design
for the discrete system (2.7) is to determine a sequence of controls that has the
maximum efficiency:

F y1;T x1;T u1;T
� �� �

; u1;T
� �! max

u1;T
: ð2:13Þ

Optimal control problems for discrete-time systems were examined by many
authors. Some approaches can be found, e.g., in [96].

Consider a series of applications-relevant special cases of problems (2.12) and
(2.13). Let a vector y*, the goal of informational control in the space of observed
network states, be fixed.

The problems

yT � y

�� ���� ��! min

uð�Þ
ð2:14Þ
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and

yT � y

�� ���� ��! min

u1;T
ð2:15Þ

will be called the problems of positional and program control for the terminal state
of the social network.

Study problem (2.15), assuming for simplicity that y = x (the states of all system
agents are observable). Under the hypotheses of Proposition 2.6c, the minimum in
(2.15) is zero and it suffices to apply control only once (see Propositions 2.6a and
2.6b). If the condition spanðU0Þ� span ATBð Þ fails, then generally the system does
not reach the state y* (here, x* = y*). So we may endeavor driving the system to
some state from the set ATx0 þ spanðU0Þ as close to y* as possible in the Euclidean
metric. In this case, the determination of an appropriate control comes to uncon-
strained minimization of a nonnegative definite quadratic form. Its solution is not
unique; by Propositions 2.6a and 2.6b, one of the solutions consists in applying a
single-time control to the system.

Problem (2.15) can be reduced to another well-known problem if controls ui take
values from some convex set U, e.g., uij j � 1. Then the determination of a program
control driving the system from a given initial state x0 to a state close to x* comes to
the convex programming problem

ATx0 þ
XT�1

t¼1

AT�tBut � x

�����

�����! min
uti2U

;

which is solvable by modern methods.
We conclude this section with an example of a positional control problem—the

design of a linear controller stabilizing the social network.
Let y = C0 x, where C0 2 <k�n is some matrix. Choose a linear control law in

the form u = K y (if u = K x, then C0 = En provided that the states of all agents are
observable). The closed-loop control system satisfies the equation

xkþ 1 ¼ AþABK C0ð Þxk: ð2:16Þ

By the linear property of this system, the stabilization of an arbitrary position x*

is equivalent to the stabilization of the trivial equilibrium of the closed-loop system
(2.16). For a stabilizing control, the spectrum of the closed-loop system matrix
A + A B K C0 lies inside the unit circle centered at the origin on the complex plane.
Note that a corresponding matrix K always exists if C0 = En and the pair A, AB is
nondegenerate.

In the general case, the well-known design methods of linear stabilizing con-
trollers for linear discrete-time systems [96] can be used for stabilization of the
social networks.

The main result of this section consists in reducing the dynamic control prob-
lems for a certain class of social networks to the standard controllability analysis
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and control design problems for linear discrete-time control systems. Therefore,
further extension of classical control theory methods to social networks seems
promising. Also we mention other directions of topical research as follows:

(1) rejecting the very strong assumption (if any) on the strict positivity of the
influence matrix; in general, exploring how the communication graph affects
the properties and controllability of the social network;

(2) considering control efficiency criteria of general form;
(3) studying control problems for “nonlinear” social networks, i.e., the networks

with nonlinear dynamics of the agents’ opinions, similar to Eq. (2.5);
(4) introducing two and more Principals that control some (possibly intersecting)

sets of agents. If the controls are assumed to be additive, then a standard
dynamic game of Principals arises naturally (see the models of informational
confrontation in Chap. 3). For this game, we may calculate, e.g.,
subgame-perfect equilibria [153].

(5) posing and solving control problems for the communications structure of social
network members, with further extension and interpretation of the results to the
consensus problem [3, 213] and vice versa;

(6) developing simulation models for the dynamic processes of informational
control.

2.3 Unified Informational Control in Homogeneous
Networks. Role of Mass Media

Assume at an initial time (step) each agent has some opinion on a certain issue. The
initial opinions of all agents is described by a column vector x0 2 <n. As the result
of opinions exchange with the neighbors from a set Ni ¼ j 2 Njaij [ 0

� �
, agent

i changes his/her opinion xki 2 <1 at step k in accordance with the law

xki ¼
X
j2Ni

aijx
k�1
j ; k ¼ 1; 2; . . . : ð2:17Þ

Obviously, any vector composed of identical opinions is a fixed point of map
(2.17). Let each agent trust him/herself with some degree: aii > 0 8i. As the
exchange processes are evolving on the infinite time horizon (see Sect. 2.1), the
opinion vector of all agents converges to the resulting opinion vector
X ¼ limk!1 xk. If the agents’ opinions are stabilized, we may write the relationship

X ¼ A1x0; ð2:18Þ
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where A1 ¼ limk!1 ðAÞk.
This section considers a modification of the Markovian model with homoge-

neous agents over a connected regular graph. In contrast to model (2.18), it will be
supposed below that the opinions of social network members also depend on the
messages of mass media.

From this viewpoint, the model studied in this section is close to the imitative
behavior model [206], in which each agent makes binary choice (one of two
actions). The difference between the homogeneous social network model and the
imitative behavior model is that the former has dynamics and the sets of admissible
opinions of all agents are continual.

Homogeneous social network. Trustful agents. Consider the case of a
homogeneous network in which all agents have the same initial opinions x0 2 <1

and their communications are described by a connected l-regular graph (i.e.,
Nij j ¼ l; i 2 N).
Besides the agents, the system includes mass media that influence their opinions.
Each agent trusts him/herself with some degree a 2 (0, 1], the same for all

agents. In addition, each agent trusts mass media with some degree b 2 [0, 1]
(a + b � 1), also the same for all agents. (For example, mass media can be
considered as the subject of informational control [165]: from mass media an agent
receives information about supposed opinions of the agents who are not directly
connected with him/her.) The residual degree of trust (1 − a − b) of each agent is
equally shared among the agents directly connected with him/her. Mass media
report the same opinion u 2 ℜ1 to all agents. So the opinion dynamics satisfies the
recursive equation

xki¼ a xk�1
i þ b uþ ð1� a� bÞ

l

X
j2Ni

xk�1
j ; k ¼ 1; 2; . . . ð2:19Þ

Because the social network is homogeneous while the communication graph is
regular, relationship (2.19) does not depend on the degree l (i.e., the number of
connections of each agent with other agents), on the network size n, and on the
degree of trust a [see (2.20)]. Note that Formula (2.20) allows for a probabilistic
interpretation: each agent keeps his/her opinion with probability a and accepts the
opinion of mass media with probability b.

As the network is homogeneous, we may omit the agent’s index, writing

xk ¼ b uþð1� bÞxk�1; k ¼ 1; 2; . . .; ð2:20Þ

or

xk ¼ u b
Xk
s¼1

ð1� bÞs�1 þ x0ð1� bÞk; k ¼ 1; 2; . . . : ð2:21Þ

2.3 Unified Informational Control in Homogeneous Networks. Role of Mass Media 69



Some elementary transformations of (2.21) yield

xk ¼ uð1� ð1� bÞkÞþ x0ð1� bÞk; k ¼ 1; 2; . . .: ð2:22Þ

For any step, the agents’ opinions belong to the range limited by their initial
opinions x0 and the control u. As k ! +∞ the limit of sequence (2.22) is u.

Interestingly, the exponential curve (2.22) can be treated in terms of learning,
memorizing and forgetting of information (see the survey of learning models in
[166]).

At each step on a planning horizon, all agents are influenced by an identical
control, and this approach is called unified informational control. The model under
consideration involves constant (time-invariant) unified control, see Formula (2.19).
The problem is to find a control law u(x*, x0, T) that drives to a desired opinion x* at
a terminal step T under given initial opinions of all agents. Without control con-
straints, this problem has trivial solution using algebraic transformations of (2.22):

u x
; x0; T
� � ¼ x
 � x0ð1� bÞT

1� ð1� bÞT : ð2:23Þ

As T ! +∞, the control law (2.23) tends to the resulting opinion x*.

Example 2.19 Choose b ¼ 1=2; x0 ¼ 0, and u = 1. The dynamics (2.22) of the
agents’ opinions are demonstrated in Fig. 2.17.

For reaching the opinion x* = 1 at step T = 10, the control law (2.23) is u(1, 0,
10) = 1024/1023. •

Note that the hypotheses on homogeneous agents and the regular communication
graph have actually allowed us to reduce the whole homogeneous regular social
network to a single agent influenced by mass media [see expression (2.22)]. The
essential system parameters—the agent’s degree of self-trust, the network size and
the regular graph degree—will affect the opinion dynamics only under other rela-
tionships differing from (2.19).

0
0,1

0,2
0,3

0,4
0,5

0,6
0,7

0,8
0,9

1

0 1 2 3 4 5 6 7 8 9 10

Fig. 2.17 Dynamics of
agents’ opinions in
Example 2.19
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Consider a possible law with such properties (in each particular case, a proper
choice will be guided by practical interpretations). Let the opinion dynamics be
described by

xki ¼ a xk�1
i þ b

ðn� lÞ
n

uþ ð1� a� bðn� lÞ=nÞ
l

X
j2Ni

xk�1
j ; k ¼ 1; 2; . . . :

ð2:24Þ

Unlike (2.19), in Formula (2.24) mass media reflect the supposed opinion of a
part of the social network that is not interacting with a given agent. The share of

such agents makes up ðn�lÞ
n and can be treated as the public opinion weight.

Again, omitting the agent’s index gives

xk ¼ b
ðn� lÞ

n
uþ 1� b

ðn� lÞ
n


 �
xk�1; k ¼ 1; 2; . . .; ð2:25Þ

or

xk ¼ u b
ðn� lÞ

n

Xk
s¼1

ð1� bÞs�1 þ x0ð1� b
ðn� lÞ

n
Þk; k ¼ 1; 2; . . . : ð2:26Þ

After elementary transformations of (2.26), we obtain

xk ¼ u
ðn� lÞ

n
1� 1� b

ðn� lÞ
n


 �k
 !

þ x0 1� b
ðn� lÞ

n


 �k

; k ¼ 1; 2; . . . :

ð2:27Þ

Note that the opinion dynamics (2.27) in this model are determined by the ratio
ðn�lÞ
n rather than by the absolute number connections of each agent with others (the

graph degree l). Moreover, the value u ðn�lÞ
n is the limit of expression (2.27) as k !

+∞.
The “extreme” cases of Formula (2.27) are the following.

– For l = n (the communication graph is complete), we obtain xk = x0; so there is
no influence of mass media because each agent receives all information from
social network members.

– For l = 0 (no connections among the agents), mass media have maximal
influence and the opinion dynamics are described by (2.22).
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In this case, an analog of (2.23) is

u x
; x0; T
� � ¼ n

ðn� lÞ
x
 � x0ð1� b ðn�lÞ

n ÞT
1� ð1� b ðn�lÞ

n ÞT
ð2:28Þ

Example 2.20 Under the data of Example 2.19, consider two communication
graphs as follows. In the first graph, l/n = 0.1, i.e., each agent is connected with one
in ten network members. In the second graph, l/n = 0.01, i.e., each agent is con-
nected with one in hundred network members. The opinion dynamics (2.27) are
illustrated in Fig. 2.18 (bold line for the first graph). The dashed line in Fig. 2.18
corresponds to the opinion dynamics in Example 2.19.

In accordance with (2.27) (also see Fig. 2.18), under a fixed size of the social
network the growing number of agent’s connections with other agents actually
decreases the influence of mass media (in terms of the variation rate of opinions and
also the equilibrium opinion). Conversely, under a fixed degree of network regu-
larity, the growing size of the social network increases the influence of mass media.

For reaching the opinion x* = 1 at step T = 10 in the case l/n = 0.1, the control
law (2.28) is u(1, 0, 10) � 1.114; in the case l/n = 0.01, u(1, 0, 10) � 1.011. So the
higher is the public opinion weight, the smaller is the difference between the mass
media message and the agent’s opinion for reaching the desired opinion. •

In the model under study, the agents are trusting in the mass media messages
with a constant degree regardless of deviations from their own opinions. This
scenario corresponds to trustful agents. Now, consider another case (cautious
agents) in which the degree of trust to mass media depends on their messages.

Cautious agents. For making the agent’s degree of trust dependent on the mass
media messages, introduce a trust function G(x, u), where x denotes the agent’s
opinion and u is control (mass media message). Numerous examples and experi-
mental data can be found in the literature on social psychology, e.g., [152]. The
trust function will be assumed to have the following properties (used in different
combinations below).
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Fig. 2.18 Dynamics of
agents’ opinions in
Examples 2.19–2.20
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Assumption A.1 The function G(x, u) is nonnegative and achieves the maximum b
at u = x: G(x, x) = b.

Assumption A.2 The function G(x, u) is nonnegative and achieves the minimum b
at u = x: G(x, x) = b.

Assumption A.3 The function G(x, u) depends on the difference (x − u) only.

Assumption A.4 The function G(x, u) is monotonically decreasing in x� uj j.
Assumption A.5 The function G(x, u) is monotonically increasing in x� uj j.
Assumption A.6 Under Assumptions A.1 and A.3, 8x 2 <1 let limu!�1
Gðx; uÞ ¼ b� and limu!þ1 Gðx; uÞ ¼ bþ , where b− � b and b+ � b. In
addition, the function G(x, u) has unique minima on the half-intervals (−∞, x] and
[x, +∞) of argument u.

Assumption A.7 Under Assumptions A.2 and A.3, 8x 2 <1 let limu!�1
Gðx; uÞ ¼ b� and limu!þ1 Gðx; uÞ ¼ bþ , where b � b− and b � b+. In
addition, the function G(x, u) has unique maxima on the half-intervals (−∞, x] and
[x, +∞) of argument u.

By Assumptions A.1 and A.2, an agent is trusting with maximal (minimal,
respectively) degree to the mass media reporting messages that coincides with his/
her opinion. By Assumption A.3, the agent’s degree of trust to mass media mes-
sages depends only on their deviations from his/her opinion, regardless of their
values. By Assumptions A.4 and A.5, the closer is a message to the agent’s
opinion, the higher (lower, respectively) is his/her degree of trust. For example,

G x; uð Þ ¼ b exp �c x� uj jð Þ; c[ 0; ð2:29Þ

and

G x; uð Þ ¼ 1� ð1� bÞ exp �c x� uj jð Þ; c[ 0: ð2:30Þ

By Assumption A.6,

– an agent is trusting with maximal degree to the mass media reporting messages
that coincide with his opinion (A.1);

– the greater are the deviations of the mass media messages from the agent’s
opinion, the lower is his/her trust to them;

– however, under “extreme” messages of mass media, an agent has a higher
degree of trust (agents are likely to trust in terrible falsehoods).

For b− = b+ = b, an example is the function

G x; uð Þ ¼ b 1� 1� exp �c x� uj jð Þð Þ exp �c x� uj jð Þ½ 	: ð2:31Þ
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By Assumption A.7,

– an agent is trusting with minimal degree to the mass media reporting messages
that coincide with his opinion (A.2);

– the greater are the deviations of the mass media messages from the agent’s
opinion, the higher is his/her trust to them;

– however, under “extreme” messages of mass media, an agent has a lower degree
of trust (agents are susceptible to conclusions not exceeding their admissible
thresholds).

For b− = b+ = b, an example is the function

G x; uð Þ ¼ ð1� bÞ exp �c x� uj jð Þ exp �c x� uj jð Þþ b: ð2:32Þ

The graphs of the trust functions (2.29)–(2.32) are schematically shown in
Fig. 2.20.

Thus, there are five cases as follows: (a) G(x, u) = b; (b) G(x, u) defined by
(2.29); (c) G(x, u) defined by (2.30); (d) G(x, u) defined by (2.31); (e) G(x, u) de-
fined by (2.32). In the probabilistic setup (e.g., the trust function is treated as the
probability to identify a given message in an informational flow), these cases have
the following practical interpretations.

Case 1 (constant trust function). An agent responds to a mass media message
regardless of its content.
Case 2 [the trust function of form (2.29)]. An agent is a conservative, i.e., the
probability of message identification decreases with the deviation from his/her
opinion.
Case 3 [the trust function of form (2.30)]. An agent is an innovator, i.e., the
probability of message identification increases with the deviation from his/her
opinion.
Case 4 [the trust function of form (2.31)]. An agent is a mild conservative, who
identifies the mass media messages coinciding with his/her opinion until the
deviation exceeds a sufficiently large threshold. Under large deviations, the prob-
ability that he/she identifies such messages is higher.
Case 5 [the trust function of form (2.32)]. An agent is a mild innovator, who
identifies mass media messages with higher probability while the deviation from
his/her opinion is not very large; yet, for sufficiently large deviations, this proba-
bility decreases.

After this brief discussion of practical interpretations of different trust functions,
assume that controls can be time-varying. Introduce the following notations:
u0;T�1 ¼ u0; u1; . . .; uT�1ð Þ 2 <T as a sequence of controls; x0;T ¼ x0; x1; . . .; xTð Þ 2
<T þ 1 as a trajectory of social network states; T � 0 as a planning horizon; F(x0,T,
u0,T−1) as a control efficiency criterion, where Fð�; �Þ:< T þ 1ð ÞT ! <1 is a given
function. For the time being, there are no control constraints (i.e., they are incor-
porated in the efficiency criterion).
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By analogy with expression (2.20), let the social network states have the con-
trolled dynamics

xk ¼ G xk�1; uk�1
� �

uk�1 þ 1� G xk�1; uk�1
� �� �

xk�1; k ¼ 1; 2; . . . : ð2:33Þ

As a small digression note it seems topical to analyze the following opinion
dynamics in an inhomogeneous and irregular social network:

xki ¼ aiix
k�1
i þ bGiðxk�1

i ; uk�1Þuk�1

þ
X
j2Ni

aijGiðxk�1
i ; xk�1

j Þxk�1
j ; k ¼ 1; 2; . . .; ð2:330Þ

where the individual trust functions {Gi(�)}i 2 N satisfy the normalization condition.
Within the framework of this model, matrix A reflects the degrees of trust to
information sources while the trust functions the degrees of trust in information
content.

In general form, optimal informational control design in a homogeneous social
network can be stated as the problem to find a sequence of controls for the dynamic
system (2.33) that maximizes the efficiency criterion:

F x0;T ; u0;T�1� �! max
u0;T�12<T

: ð2:34Þ

Problem (2.34) is an optimal control problem and can be solved using
well-known methods (see Example 2.21 below). For instance, if the efficiency
criterion is additive in the time variable, we may employ Bellman’s principle of
optimality.

In the case of constant controls, expression (2.33) takes the form

xk ¼ G xk�1; u
� �

uþ 1� G xk�1; u
� �� �

xk�1; k ¼ 1; 2; . . .; ð2:35Þ

and problem (2.34) can be written as

F0 x0;T ; u
� �! max

u2<1
: ð2:36Þ

So we have obtained an unconstrained scalar optimization problem in which
F0ð�; �Þ:<T þ 1 ! <1 is a given efficiency criterion with constant controls.

A particular setup of problem (2.34) is as follows. Let x* be a fixed vector that
specifies the goal of informational control. Assume a given function
C u0;T�1ð Þ:<T ! <1 defines control cost bounded above by R � 0. Then problem
(2.34) can be written as
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xT � x
k k ! min
u1;T

;

Cðu0;T�1Þ�R:

(
ð2:37Þ

The next example of optimal informational control design well illustrates the
relationship between optimal solutions and the properties of trust functions.

Example 2.21 Consider problem (2.37). Choose b = 0.5, c = 0.1, x0 = 0, x* = 1,
T = 10, C u0;T�1ð Þ ¼PT�1

s¼0 u
s, and R = 5, and use the quadratic norm for the goal

function of problem (2.37). The trust functions for the five cases above are shown in
Fig. 2.19 (the horizontal axis is associated with |x − u|).

In accordance with Fig. 2.19, under small values of the parameter c the trust
functions in this example have almost linear character; moreover, the graphs of the
trust functions (2.29) and (2.31) [(2.30) and (2.32)] almost coincide with each other.
For higher c, they are differing more and more, see Fig. 2.20 with the graphs for
c = 3.

The constant controls in all the cases are 0.5.
Figures 2.21 and 2.22 demonstrate the opinion dynamics with the trust functions

(2.29), (2.30), (2.31) and (2.32) under the optimal constant controls for c = 0.1 and
c = 3, respectively. Due to the control constraints, the agents’ opinions cannot
reach the goal value x* = 1 as desired.

Figures 2.23 and 2.24 present the graphs of the degrees of trust with the trust
functions (2.29), (2.30), (2.31) and (2.32) under the optimal constant controls for
c = 0.1 and c = 3, respectively.

Now, consider a more complex scenario with variable controls—a special case
of problem (2.34) defined by (2.33), (2.37). This is a linear discrete problem with a
quadratic integral criterion over a fixed time horizon.

Fig. 2.19 Graphs of trust functions in Example 2.21 (c = 0.1)
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Figures 2.25 and 2.26 show the opinion dynamics with the trust functions (2.29),
(2.30), (2.31) and (2.32) under the optimal variable controls for c = 0.1 and c = 3,
respectively.

Figures 2.27 and 2.28 present the graphs of the degrees of trust with the trust
functions (2.29), (2.30), (2.31) and (2.32) under the optimal variable controls for
c = 0.1 and c = 3, respectively.

The graphs of the optimal variable controls for c = 0.1 and c = 3 are given in
Fig. 2.29 and Fig. 2.30, respectively.

The values of the efficiency criterion (to be minimized) are combined in
Table 2.1. •

Fig. 2.20 Graphs of trust functions in Example 2.21 (c = 3)

Fig. 2.21 Opinion dynamics under optimal constant controls in Example 2.21 (c = 0.1)
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The main result of this section at qualitative level is as follows. We have reduced
unified informational control design in homogeneous social networks described by
regular communication graphs to the dynamic analysis of single agent’s opinions
under the informational influence of mass media. It would be interesting to consider
how the agent’s degree of trust in mass media messages depends on the content of
reported information rather than on its source (which is traditionally described by
the Markovian models of social networks, see Sect. 2.4). In other words, a
promising line of further research is to examine how the deviations between the
messages and agent’s beliefs affect his/her degree of trust.

It seems that the rather strong assumptions above (communication graph regu-
larity and agents; homogeneity) have allowed us to obtain simple analytic

Fig. 2.22 Opinion dynamics under optimal constant controls in Example 2.21 (c = 3)

Fig. 2.23 Dynamics of degrees of trust under optimal constant controls in Example 2.21
(c = 0.1)
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Fig. 2.24 Dynamics of degrees of trust under optimal constant controls in Example 2.21 (c = 3)

Fig. 2.25 Opinion dynamics under optimal variable controls in Example 2.21 (c = 0.1)

Fig. 2.26 Opinion dynamics under optimal variable controls in Example 2.21 (c = 3)
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Fig. 2.27 Dynamics of degrees of trust under optimal variable controls in Example 2.21 (c = 0,1)

Fig. 2.28 Dynamics of degrees of trust under optimal variable controls in Example 2.21 (c = 3)

Fig. 2.29 Optimal variable controls in Example 2.21 (c = 0.1)
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expressions for opinion dynamics and to reduce informational control design to
well-known optimization problems.

Another topical field of investigations is to describe and study the nonlinear
models of social networks with complex trust in which the agent’s degree of trust to
his/her neighbor depends not only on the source but also content of information
reported—see (2.33‘). Though, in the general case of inhomogeneous agents, one
can hardly expect simple analytic formulas [like (2.18)] for the equilibrium states of
social networks.

In the class of threshold models of social networks, there exists a series of
publications with rigorous statements and explicit solutions of informational control
design, in discrete or continuous time [12, 13, 29, 167].

It is possible to consider other (e.g., threshold) classes of trust functions, to
complicate the agent’s internal structure (by analogy with the bipolar choice models
[168] or Lefevbre’s logical models [134]). The model can be also generalized using
reflexion: agents choose actions depending on their opinions and observe the results
of these actions (the “opinion–action–result” approach). Then, in addition to effi-
ciency, the stability problems of informational influences [168] arise naturally.

Fig. 2.30 Optimal variable controls in Example 2.21 (c = 3)

Table 2.1 Values of efficiency criterion

Case Efficiency of constant
controls

Efficiency of variable
controls

c = 0.1 c = 3 c = 0.1 c = 3

1: G(�) = b 0.2505 0.2505 0 0

2: G(�) defined by (2.29) 0.2505 0.2711 0 0.1736

3: G(�) defined by (2.30) 0.2504 0.25 0 0

4: G(�) defined by (2.31) 0.2505 0.2515 0 0

5: G(�) defined by (2.32) 0.2504 0.2502 0 0
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Finally, non-Markovian dynamics of agents’ opinions can be studied, e.g., each
agent tries to predict the opinion variations of other agents, etc. But such setups
proceed from the hypothesis that the whole social network is common knowledge
among all agents, actually a very strong assumption. All these are the subjects of
future research on informational control modeling for social networks.

2.4 Informational Control and Reputation of Network
Members

Reputation. In a social network, the reputation of a given member to a large extent
predetermines his/her capabilities of influencing other members. In accordance with
the Merriam–Webster Dictionary, reputation is an overall quality or character as
seen or judged by people in general. Reputation may be regarded, first, as an
expected norm of the agent’s activity—which behavior is expected from him/her by
other agents [60]. Second, as a “weight” of the agent’s opinion determined by past
verifications of his/her opinions and/or efficiency of his/her activity. Reputation is
justified and often grows if the agent’s choice (opinions, actions, etc.) coincides
with what the others expect from him/her and/or with what the others consider as
the norm (e.g., efficient activity). Reputation may also decline, e.g., when an agent
violates behavioral standards of the community, when he/she makes an inefficient
decision, etc. Note that there exist individual and collective reputation. The models
of individual and collective reputation were surveyed in [60].

Let ri � 0 be a parameter that describes the reputation of agent i. Unless
otherwise stated, the vector of all reputations r = (r1, r2, …, rn) forms common
knowledge among the agents. Assume an agent with nonzero reputation always
exists in the network, which is a complete graph. In accordance with the outcomes
of Sect. 2.1, the resulting opinion will be the same for all agents in the social
network.

Define the degree of trust of agent i in agent j as

aij ¼ rjP
k2N rk

; i; j 2 N: ð2:38Þ

In other words, the influence level of each agent does not depend explicitly on
the objects of influence, being proportional to his/her relative reputation. As follows
from (2.38), agent i has greater susceptibility to the influence of agent j if the latter’s
reputation is higher while the reputations of the former and all other network
members are lower.5

5Naturally, the relationship between the influence level and reputation can be defined in another
way, with the properties of partial monotonicity and transparent interpretations in applications (see
the discussion below).
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Note that the normalization condition (2.1) always holds for the degree of trust
(2.38). Denote by R ¼Pk2N rk the total (“collective”) reputation of all network
members.

Then the agents’ opinions have the linear dynamics

xsi ¼
1
R

X
j2N

rjx
s�1
j ; i 2 N; ð2:39Þ

while the resulting opinion of all agents is given by

X ¼ 1
R
ðr � x0Þ: ð2:40Þ

Therefore, the scalar resulting opinion X (the same for all agents!) is defined by the
scalar product of the reputation vector r and the initial opinion vector x0, with
normalization by the total reputation. Interestingly, the resulting opinion is formed
in one step.

Manipulation of opinions for social network members. The elementary model
of informational control (manipulation of opinions in a social network6) is the
following. Assume a certain agent (without loss of generality, agent 1 with a
reputation r1 > 0) is interested in a resulting opinion X*. For a given reputation
vector and fixed opinions of the other agents, this can be achieved [see (2.40)] by
reporting

s1 ¼ 1
r1

RX
 �
X
k[ 1

rkx
0
k

" #
: ð2:41Þ

Using the nonnegativity of all initial opinions (particularly, x01 � 0), we may find
a lower limit for the “manipulation range” of agent 1:

X
 � 1
R

X
k[ 1

rkx
0
k : ð2:42Þ

(With unbounded messages and nonzero reputation, he/she may further improve
this value as much as needed.)

In accordance with Formula (2.42), the higher is the reputation of the agent
performing manipulation, the wider are his/her capabilities to influence the
resulting opinion of the agents in a social network.

6Under manipulation we understand a purposeful formation of opinions for social network par-
ticipants, i.e., informational control. A negative connotation of this term is not supposed, i.e.,
manipulation is considered ethically neutral. The second (close) meaning of the term “manipu-
lation” is the distortion (mispresentation) of any information reported by an agent (also see below).
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In the general case, all the agents can manipulate the resulting opinion by
reporting different opinions than their true ones. This leads to the model of linear
active expertise7 [see expression (2.40)], which is well-known in the literature
[165].

Now, let us study the manipulation capabilities of agent 1 depending on his/her
reputation. Assume agent 1 may report an initial opinion only above some bound
xmin
1 [ 0. Then the minimal reputation of agent 1 for achieving the equilibrium X*

under the constraint xmin
1 [ 0 can be calculated by

r1 ¼
P

j[ 1 rjðx0j � X
Þ
X
 � xmin

1
ð2:43Þ

From Formula (2.43) it follows that the higher is the reputation of other agents,
the stronger are the requirements applied to the reputation of manipulating agent.

In real social networks, agents can often report their opinions within a rather
wide range. However, as a rule they cannot choose their reputation by themselves
because it significantly depends on the history of agents’ interaction.

Further considerations involve the following idea at qualitative level. If a certain
agent wants to manipulate the opinions of social network members, then he/she
needs sufficient reputation. Therefore, it is necessary to examine a scenario in which
an agent first undertakes some actions to increase his/her reputation and then uses it
for individual goals—efficient manipulation. So the problem consists in a proper
description of (1) reputation dynamics and (2) reputation development processes for
certain purposes.

Reputation dynamics. For the dynamic modeling of the agents’ reputation,
assume their interaction—see the previous paragraph—is repeated sequentially a
finite number of times, with different initial conditions. In a practical interpretation,
the agents may sequentially discuss several issues of interest, and the reputation of
each agent generally depends on the whole history of discussions.

There are T sequential time periods, and the members of a social network are
sequentially considering each of T issues at a corresponding step. Each agent has an
initial opinion xsi , i 2 N; s ¼ 1; T , on each of these issues. Denote by r1i , i 2 N, the
initial reputations of the agents. Assume the common knowledge of the agents
covers their reputations (initial and current reputations as well as the whole history
of reputation dynamics), the initial and resulting opinions of all agents for the
current and all past periods.8

7The process of exchanging opinions among social network members that results in some col-
lective opinion can be interpreted as expertise.
8The operation of a social network can be considered in two time scales, fast (in which the
opinions of all network members on a fixed issue are converging) and slow (in which the network
members are sequentially discussing different issues).

84 2 Models of Informational Control in Social Networks



Denote by Rs the total reputation of the agents at the beginning of period s and
by Xs the resulting opinion of the agents at the end of this period. As follows from
(2.40), this opinion will be the same for all the agents.

Thus, the issues considered by the agents are independent and the resulting
opinions will be given by

Xs ¼ 1
Rt ðrs � xsÞ; ð2:44Þ

where rs ¼ ðrs1; . . .; rsnÞ and xs ¼ ðxs1; . . .; xsnÞ are the vectors of reputations and
initial opinions of the agents at the end of period s, s ¼ 1; T .

In order to describe the whole trajectory of opinions and reputations of the
agents, it is necessary to determine how the reputation of each agent changes in
each period. Assume reputation is a cumulative characteristic (no forgetting), and
the reputation of any agent at the beginning of each period coincides with his/her
reputation at the end of the previous period.

The issues considered by the agents belong approximately to the same theme; so
an agent with high reputation on one issue (as the result of discussions) will have
the same reputation as the debates proceed to the next issue.

In the general case, we may hypothesize that the reputation of agent i in period s
is defined by the initial and resulting opinions of all the agents and their reputations
in all the previous periods:

rsi ¼ Fiðr1; . . .; rs�1; x1; . . .; xs�1;X1; . . .;Xs�1Þ; i 2 N; s ¼ 2; T : ð2:45Þ

(By assumption, each agent prefers truth-telling and reports reliable information.)
Moreover, it seems reasonable to expect that the function Fi(�) is at least mono-
tonically decreasing in the difference xs�1

i � Xs�1
�� �� and also increasing in the

previous reputations of agent i. For example, the following law of reputation
variation can be used:

rsi ¼
rs�1
i

cþ bjxs�1
i � Xs�1j ; i 2 N; s ¼ 2; T; ð2:46Þ

where c 2 (0, 1] and b > 0 are given constants. In accordance with Formula (2.46),
the agent’s reputation at the beginning of any period depends on his/her reputation
in the previous period and also on how much his/her initial opinion in the previous
period turned out to be different from the resulting opinion of all agents at the end
of this period. In other words, the agent’s reputation is increasing (decreasing), and
the rate of variation is determined by the constants c and b if the resulting opinion
of all the agents turns out to be close to (considerably differs from) his/her opinion.

The law of reputation variation (2.46) is a possible one. For example, the logistic
law of reputation variation [60] or other approaches are often used: in each par-
ticular case, it is necessary to perform identification—find the best laws for the
observed or predicted effects.
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Hopefully, complex dynamic models of reputation will provide a good
description for many frequently encountered phenomena such as untrue reputation,
inertia of reputation dynamics (by ceasing “investments” into his/her own reputa-
tion, an agent may still take advantage of it for some time), and others (see
examples in [60]). The development of such game-theoretic models is a long-term
goal of further research that goes beyond the scope of this book.

Following the description of informational influence and reputation dynamics,
let us state and solve an associated control problem.

Informational control problem. With Eqs. (2.44) and (2.45) that model the
opinion dynamics depending on reputation and the reputation dynamics depending
on the opinion dynamics, we can formulate and solve an associated control problem
—calculate an influence on social network agents that leads to the formation of
required opinions.

Further analysis will be confined to the case of manipulation performed by a
single agent (agent 1), who tries to manipulate his/her initial opinions on each issue
for achieving a certain resulting opinion of all network members on the last
question (through appropriate dynamics of his/her reputation).

Thus, we have the dynamic system (2.44)–(2.45). It is required to find a
sequence s11; s

2
1; . . .; s

T
1 of the initial opinions of agent 1 reported to the other agents

that satisfies the constraints ss1 � xsmin
1 , s ¼ 1; T , and also minimizes a given

monotonic goal function F XT � XT



�� ��� �
. (Manipulation actually consists in

reporting ss1 6¼ xs1, and a desired resulting opinion XT

 on the last issue can be

interpreted as the goal of control—manipulation).
In the general case, this problem is of dynamic programming (under appropriate

constraints imposed on the properties of the functions and admissible sets) and may
be solved numerically in each particular case.

Consider the following behavioral heuristics for agent 1. Recall that the higher is
the reputation of the agent performing manipulation, the wider are his/her oppor-
tunities of influencing the resulting opinions of all agents in a social network with
fixed reputations. Thus, for agent 1 it is desirable to have the maximum possible
reputation by the beginning of the last period. Let the function F1(�) satisfy the
monotonicity condition above and be such that the reputation of agent 1 in the
current period depends only on his/her reputation in the previous period, on his/her
initial opinion in the previous period and on the resulting opinion in the previous
period [further referred to as Assumption (*)]. In this case, consider the following
solution of the informational control problem: in each period except the last, agent 1
should independently choose an initial opinion to maximize his/her reputation at the
end of this period. In the last period, agent 1 should choose his/her initial opinion by
minimizing F XT � XT



�� ��� �

under the established and fixed reputation, and the value
XT will depend only on the initial opinion sT1 in period T.

Formally, agent 1 solves a system of problems that includes T − 1 independent
reputation maximization problems and a single choice problem of his initial opinion
in the last period:
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ss1 �
1
Rs

rs1s
s
1 þ

X
j[ 1

rsj x
s
j

" #�����
�����! min

ss1 � xsmin
1

; s ¼ 1; T � 1; ð2:47Þ

1
Rs

rT1 s
T
1 þ

X
j[ 1

rTj x
T
j

" #
� XT




�����
�����! min

sT1 � xTmin
1

: ð2:48Þ

Without any constraints on the initial opinions reported by agent 1, the solution
of problem (2.47) has the form

ss1 ¼
P

j[ 1 r
s
j x

s
jP

j[ 1 r
s
j
; s ¼ 1; T � 1: ð2:49Þ

So agent 1 is maximizing his/her reputation by expressing “weighted average”
opinion of the other agents considering their reputations. Figuratively speaking,
Formula (2.49) illustrates the principle “always say what the majority does and be
counted wise.”9

Thus, during the first T − 1 periods, the manipulating agent is maximizing his/
her reputation, and in the last period uses the latter for achieving the goals of
informational control. Although looking quite rational, such behavior is merely a
heuristic yielding no accurate solution of the informational control problem. The
cause is that the total reputation of all agents appears in the resulting reputation RT

in period T [see Formula (2.48)] but, in each period, agent 1 ignores this fact and
chooses his/her actions by rule (2.48), thereby influencing the reputation of the
other agents [see Assumption (*)]. This phenomenon is also illustrated by an
example in Sect. 3.1. The heuristic solution can be transformed into the exact one
by defining the influence and reputation so that the resulting reputation is con-
stant,10 or using the hypothesis of weak contagion [165].

Fuzzy model of social network. The social network model under consideration
(see the current paragraph and also Sect. 2.1), which reflects the informational
influence of agents, their reputation and opinion dynamics, can be called the basic
model of a social network. Now, extend it to the fuzzy case.

A rather simple form of expression (2.40), which describes the relationship
between the resulting opinion of social network members and their initial opinions
and reputations, allows us to obtain a similar formula in the case where the repu-
tations and initial opinions of all agents are fuzzy. Such a generalization will be
called the fuzzy model of a social network.

9To be more exact, this formula implies prediction for opinions exchange.
10Normalization of individual reputations by the total one leads to a Markovian model in which the
probabilities of steady states are defined by the relative reputations of corresponding agents.
A steade state is a collective decision that coincides with the opinion of some agent.
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Assume the fuzzy initial opinion of agent i is described by a membership
function mi(xi): [0; + ∞) ! [0; 1], i 2 N. Let the reputations of all agents be fuzzy
with some membership functions li(ri): [0; + ∞) ! [0; 1], i 2 N.

Following the principle of generalization [173], we may write the following
expression for the membership function of the fuzzy initial opinions of all agents in
a social network:

l Xð Þ ¼ max

ðr;xÞj
P

j2N rjxjP
i2N ri

¼X

� �min
i2N

min½li rið Þ; mi xið Þ	f g:

This transition from the basic model to its fuzzy analog naturally satisfies the
principle of conformity: in the “limiting” case (the reputations and initial opinions
of all agents are crisp), the above formula of l(X) gives the same result as (2.39).

Example 2.22 Two agents have crisp reputations and fuzzy initial opinions defined
on a binary support —the set {0; 1}—with the membership functions
m1(0) = 1 − p, m1(1) = p, m2(0) = 1 − q, and m2(1) = q, where p, q 2 [0; 1].

Then

l Xð Þ ¼ max
ðx1;x2Þjr1x1 þ r2x2

r1 þ r2
¼X

n o min½m1 x1ð Þ; m2 x2ð Þ	g:

Thus, the resulting opinion is a fuzzy variable ~X with the finite support

0; r2
r1 þ r2

; r1
r1 þ r2

; 1
n o

and the membership function that takes the corresponding

values (min [(1 − p); (1 − q)]; min [(1 − p); q]; min [p; (1 − q)]; min [p; q]).
If p = 1/3, q = 1/4, r1 = 1, and r2 = 2, then the fuzzy resulting opinion of social

network members is {0|2/3; 1/3|1/3; 2/3|1/4; 1|1/4}. In Fig. 2.31, the values of the
membership function are set in bold type. •

This example well illustrates a remarkable property of the fuzzy model: even for
the same carriers of fuzzy initial opinions of agents, the carrier of their resulting
opinion may differ. This property plays crucial role for informational control
problems and their solvability even if the initial opinions of all agents are finite and
pairwise distinguishable. •

Informational confrontation. Now, suppose a part of the agents—further called
active—can perform manipulation by choosing at each step the opinions (messages)
reported to other agents from a given value set. (In a more complicated setup, they
make choice at a specified step.) Of course, active agents are considering the impact
of these messages on the resulting opinions and also on reputation dynamics. The
preferences of active agents are defined over the set of all sequences of resulting
opinions of social network members on issues of interest. It is required to solve the
game of active agents, i.e., to find the sets of their equilibria in some sense.
A proper concept of equilibrium is predetermined by practical interpretations as
well as by the sequence and amount of information received by all agents. For

88 2 Models of Informational Control in Social Networks



example, we may consider repeated, extensive form, cooperative and other games
over social networks.

Within the framework of the suggested social network model, the problem of
informational confrontation is actually reduced to the problem of dynamic active
expertise with reputation, which seems to be a fruitful generalization of classical
collective choice problems. Dynamic active expertise with reputation inevitably
leads to the problem of strategy proofness, a central one for collective choice
theory, which can be stated as the following question. Which decision procedures
(mutual informational influence processes of agents) guarantee that truth-telling
(reporting actual opinions) is preferable to manipulation? This question still has no
answer.

Example 2.23 Consider an interaction of three agents (n = 3) during two periods
(T = 2). The initial opinions of the agents are x11 ¼ 1, x12 ¼ 2, x13 ¼ 3, x21 ¼ 4,
x22 ¼ 5, x23 ¼ 6, xtmin

i ¼ 0:5, i ¼ 1; 2; 3; s ¼ 1; 2. They have the same initial repu-
tations, r11 ¼ r12 ¼ r13 ¼ 1, and the reputation dynamics are given by (2.46) with
c = 1/2 and b = 1.

First, calculate the resulting opinions and reputations without manipulation when
all agents report actual information. The total reputation in period 1 is R1 = 3.
Using (2.40) find X1 = 2. By Formula (2.46) the reputations of the agents in period
2 are r21 ¼ 2=3, r22 ¼ 2, and r23 ¼ 2=3. Again using (2.40), calculate the resulting
opinion of the agents at the end of period 2: X2 = 5.

Now, let agent 1 perform manipulation for achieving the same resulting opinion
in period 2 as his/her own opinion, i.e., X2


 ¼ x21 (this goal function has similar
interpretation as in the models of active expertise [165]). To this effect, he/she

0 1

2/3
3/4

I II 1/4
I II
1/3

Initial opinions of agents

0 11/3 2/3

2/3

1/41/4

Resulting opinion of agents

1/2

Fig. 2.31 Initial and resulting opinions of agents in Example 2.22
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should choose two values, s11; s
2
1 � xmin

1 ¼ 0:5, that minimize the following goal
function [see (2.48)]:

F XT � XT



�� ��� � ¼ 1
R2 r21s

2
1 þ r22x

2
2 þ r23x

2
3

� 	� XT



����
����: ð2:50Þ

From Formula (2.40) it appears that X1ðs11Þ ¼ ðs11 þ 5Þ=3. Substituting expres-
sion (2.46), we find the relationships between the reputations of all agents in period
2 and the actions of agent 1 in period 1:

r21 s11
� � ¼ 6

3þ 2 2s11 � 5
�� �� ; r22 s11

� � ¼ 6
3þ 2 1� s11

�� �� ;
r23 s11
� � ¼ 6

3þ 2 4� s11
�� �� :

In final analysis, problem (2.50) takes the form

r21ðs11Þs21 þ 5r22ðs11Þþ 6r23ðs11Þ
r21ðs11Þþ r22ðs11Þþ r23ðs11Þ

� 4

����
����! min

s11 � 1=2;s21 � 1=2
: ð2:51Þ

The solution is s11 ¼ 2:5, s21 ¼ 2:5 (in period 2, the reputations are r21 ¼ 2,
r22 ¼ 1, r23 ¼ 1). The goal function (2.51) takes value 0, which means that the goal
of control is completely reachable under the existing constraints
X2 ¼ 4 ¼ 4 ¼ X2



� �

. Interestingly, in this example the heuristic algorithm gives the
optimal solution.

Next, consider the case in which agents 1 and 2 both perform manipulation, the
former for achieving the same resulting opinion in period 1 as his/her own opinion,
X1

 ¼ x11, whereas the latter for achieving the same resulting opinion in period 2 as

his/her own opinion, X2

 ¼ x22. Then X1 s11; s

1
2

� � ¼ s11 þ s12 þ 3
� �

=3. Find the rela-
tionships between the reputations of all agents in period 2 and the actions of agents
1 and 2 in period 1:

r21 s11; s
1
2

� � ¼ 6
3þ 2 2s11 � s12 � 3

�� �� ; r22 s11; s
1
2

� � ¼ 6
3þ 2 2s12 � s11 � 3

�� �� ;
r23 s11; s

1
2

� � ¼ 6
3þ 2 6� s11 � s12

�� �� :
Agent 1 should choose s11 and minimize his/her goal function F X1 � x11

� � ¼
1
3 s11 þ s12 þ 3
� 	� 1

�� �� ¼ 1
3 s11 þ s12
� 	�� �� subject to the existing opinion constraints. As

easily verified, regardless of the opponent’s actions the minimum value is achieved
at s11 ¼ 0:5.
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Agent 2 chooses s12 in period 1 to maximize his/her reputation. To this end, he/
she should minimize s12 � 1

3 s11 þ s12 þ 3
� 	�� �� subject to the opinion constraints. As a

result, s12 ¼ 1:75 ¼ X1 (so agent 1 has not completely achieved his/her goal,
1.75 − 1.0 = 0.75). The reputations of all agents in period 2 are r21 ¼ 4=7, r22 ¼ 2,
and r23 ¼ 4=7.

In period 2, agent 2 should choose s22 and minimize his/her goal function

FðX2 � x22Þ ¼
4r21ðs11; s12Þþ s22r

2
2ðs11; s12Þþ 6r23ðs11; s12Þ

r21ðs11; s12Þþ r22ðs11; s12Þþ r23ðs11; s12Þ
� 5

����
����

subject to the opinion constraints. Consequently, s22 ¼ 5, which indicates that the
goal of agent 2 is completely achieved. •

In fact, other games with a fixed sequence of moves can be considered by
analogy.

Reflexion of agents. In accordance with the hypothesis above, such social
network parameters as the initial opinions of each agent on each issue, the repu-
tations of all agents, the formation law of the resulting opinions and also reputation
dynamics are common knowledge of all agents. However, in real applications this
hypothesis may fail: for example, in large social networks the agents do not know
all members while the beliefs of agents about the opinions and/or reputations of
each other can be incomplete and/or differ. Such situations are well described using
uncertain factors (incomplete awareness) and/or nontrivial mutual awareness of
agents. For informational control problems in social networks, uncertainty can be
introduced by analogy with other decision models and game-theoretic models
[168]. So we will discuss in brief the reflexion of agents.

Along with informational reflexion based on the asymmetric awareness of
agents, it seems interesting to study strategic reflexion, traditional for
game-theoretic models. This is the process and result of agent’s thinking of the
possible actions to be chosen by opponents. An important remark should be made
here as follows. Within the model under consideration, the agents are not active
participants because they choose no actions and have no personal preferences. They
merely form their own opinions using the opinions of others in the passive mode
(based on trust). The only exception is an agent who performs manipulation: he/she
plays with a definite goal and chooses an optimal action for achieving it. In other
words, common agents and manipulator are two fundamentally different objects of
modeling. Their distinction is not transparent in simple cases (see the previous
example) but crucial in complex scenarios (e.g., informational confrontation of
several manipulators). Once again, in contrast to a common agent who changes his/
her opinion depending on the opinions of others, a manipulator forms the opinions
of others (not changing his/her own opinion) for definite goal. So the network nodes
are considered as agents controlled by players of “high intellect” (particularly, a
player can be an agent or a group of agents).

Perhaps, there are two possible approaches to model players. The first approach
employs the idea that the players are not social network elements (agents) and
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merely influence the network in some way (such an approach is adopted in
Sects. 2.3 and 3.1). The second approach treats the players as agents (social net-
work elements) for which the reputations of other agents are totally insignificant:
they never change their opinions. A detailed exploration of both approaches goes
beyond the scope of this book.

For the sake of illustration, consider a decision model in which an arbitrary agent
i 2 N chooses messages to be reported as his/her opinion to other agents11 (the case
of strategic reflexion [168]). Let this agent be interested in that the resulting opinion
coincides with his/her message.12 In a practical interpretation, this agent has
authority (high reputation) among opponents—the whole community “agrees” with
him/her.

In the case of no reflexion, by (2.40) agent i will report [also see (2.49)]

s
i r; x�ið Þ ¼
P

j 6¼i rjx
0
j

R� ri
; ð2:52Þ

where x�i ¼ x1; x2; . . .; xi�1; xiþ 1; . . .; xnð Þ, i 2 N. Expression (2.52) means that,
with this decision rule, the agent ignores his/her opinion and reports the weighted
average opinion of all other agents (the weight coefficients are their reputations).
Vector (2.52) can be called the reflexive equilibrium of rank 1, see the details
below.

Which assumptions on the opponents’ decision-making are made by the agent?
If each agent used a decision rule like (2.52), the only “equilibrium” would be the
same opinion reported by all agents. Moreover, if the agents had the same repu-
tations, this would be a Nash equilibrium only under the same actual opinions of all
agents.

Therefore, introduce the factor of strategic reflexion in the following way.
Assume agent i chooses his/her message (2.52), expecting that all other agents
prefer truth-telling. (In view of the discussed distinctions of agents and manip-
ulators, this assumption means that the agents are players of “moderate intellect”.13)
If all agents behave in this way, the resulting opinion is

X̂ ¼ 1
R

X
i2N

P
j6¼i rjx

0
j

R� ri
ri: ð2:53Þ

In the case of two agents, expression (2.53) takes the form X̂ ¼ x01r2 þ x02r1
r1 þ r2

. So,
performing strategic reflexion, the agents “exchange” reputations with one another
and report the opponent’s opinion.

11If each agent adheres to truth-telling, reflexion makes no sense.
12Note that such goals of agent’s behavior differ from the ones in active expertise models (an agent
wants the resulting opinion to match his actual opinion, not the reported message).
13A more intellectual player at least expects that the other agents-players may perform reflexion.
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The stability condition [168] of the reflexive equilibrium (2.52) is the coinci-
dence of the resulting opinions defined by (2.40) and (2.53):X

i2N
ri½s
i ðr; x0�iÞ � x0i 	 ¼ 0: ð2:54Þ

Now, we will discuss in brief the case of informational reflexion, which precedes
strategic reflexion [168]. Denote by R the set of all possible finite sequences of
indexes from N. Let rir be the belief of agent i about the reputation of agent r [168],
where i 2 N and r 2 R. For example, rij is the belief of agent i about the reputation
of agent j, rijk is the belief of agent i about the belief of agent j about the reputation
of agent k, and so on. (Under common knowledge, rij = rj for any i, j 2 N). Such an
awareness structure can be considered using the apparatus of reflexive games [168],
particularly for informational equilibrium design and stability analysis. This rep-
resents a topical issue for future investigations.

Concluding Sect. 2.4, note that informational influences for achieving certain
agents’ awareness about their reputations in a social network is a kind of infor-
mational control. Such control, including its particular case—manipulation (see
above), is also an interesting field of research.

Example 2.24 Consider an interaction of three agents (n = 3) with strategic
reflexion. The initial opinions are x01 ¼ 1; x02 ¼ 2, and x3

0 = 3. All agents have the
same reputation equal to 1. In the case of truth-telling by all agents, the resulting
opinion would be X = 2.

Using (2.52) find

s
1 ¼ 5=2; s
2 ¼ 2; s
3 ¼ 3=2:

With these messages, the resulting opinion is X̂ ¼ 2, i.e., condition (2.54) holds.
An example where (2.54) fails is the scenario with x3 = 4. Then

s
1 ¼ 3; s
2 ¼ 5=2; s
3 ¼ 3=2; and X̂ ¼ 7=3[X ¼ 2:

Consider an example of informational reflexion that involves two agents (n = 2).
The initial opinions are x01 ¼ 1 and x02 ¼ 2; the reputations, r1 = 2 and r2 = 1. The
resulting opinion under truth-telling would be X = 4/3. In the case of strategic
reflexion, X = 5/3.

Now, choose the awareness structure 1 ! 2 $ 21. In other words, agent 2 has
the belief r21 = 3 about the opponent’s reputation and considers it as common
knowledge. Agent 1 is completely informed of it. Calculate the informational
equilibrium: following (2.52), agent 2 chooses s
2 r21; r2; x01

� � ¼ x01 (for two agents,
this choice does not depend on the beliefs of agent 2 about the opponent’s repu-
tation!), expecting the same message from agent 1. On the other hand, agent 1

chooses his/her best response s
1 from the condition s
1r1 þ x01r2
r1 þ r2

¼ s
1, i.e., s


1 ¼ x01. The

informational equilibrium x01; x
0
1

� �
is stable yet false: it drives to the resulting

2.4 Informational Control and Reputation of Network Members 93



opinion 2/3, which differs from the resulting opinion X = 4/3 under complete
awareness. •

Further studies of academic and practical interest include the following:
(1) generalizations of these models under weaker assumptions, in the first place,
incomplete and asymmetric awareness of agents; (2) game-theoretic models of
informational control and informational confrontation with uncertainty, reflexion
and cooperation of agents.

2.5 Informational Control and Trust of Network
Members

This section considers two setups of informational control problems for the trust of
social network members. The first setup proceeds from reputation control while the
second from mutual trust control of agents.

Reputation control. Assume there exists a set of agents M�N (agents of
influence) whose reputation can be affected by a control subject (Principal).

Let the initial opinions of all agents and also the reputations of all agents except
those of influence be given and fixed. Other known parameters of the model include
the following: cj(rj) as the Principal’s cost to establish a reputation rj for the agent of
influence j, where j 2 M Mj j ¼ mð Þ; H(X) as the Principal’s payoff from the
resulting opinion X. Denote by rM ¼ rj

� �
j2M the reputation vector of all agents of

influence and by C0 rMð Þ ¼Pj2M cjðrjÞ the total Principal’s cost.
In accordance with the results of Sect. 2.4, the resulting opinion of all social

network members depends on their initial opinions and reputations, i.e.,

X rMð Þ ¼ 1P
i2NnM ri þ

P
j2M rj

X
i2NnM

rix
0
i þ

X
j2M

rjx
0
j

2
4

3
5

Assume there are no reputation constraints, and define the Principal’s goal
function as the difference between his/her payoff and cost:

U rMð Þ ¼ H X rMð Þð Þ � C0 rMð Þ:

In this case, reputation control design can be written as a standard optimization
problem of the form

H
1P

i2NnM ri þ
P

j2M rj

X
i2NnM

rix
0
i þ

X
j2M

rjx
0
j

0
@

1
A

0
@

1
A�

X
j2M

cjðrjÞ ! max
rM � 0

:
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Control of trust matrix elements. Further exposition mostly relies on a
hypothesis that the object of control is the opinions of agents. Generally speaking,
the Principal may affect these opinions at some times. Such informational influ-
ences change the resulting opinions of the agents, making them more beneficial to
the Principal. However, informational control can be applied to the mutual trust or
influence of agents as well. Using proper variations for the degrees of mutual trust
(the elements of a trust matrix), the Principal may also achieve his/her goals.

For formal modeling of trust control, recall that at a time t � 0 the state of a
social network without control (i.e., the opinion vector of all agents) satisfies the
relationship

xt ¼ Að Þtx; ð2:55Þ

where x = x0 is the initial network state and A denotes a direct influence matrix of
dimensions n � n. Assume the Principal’s trust control is implemented in form of
an additive variation of the matrix A with a control matrix V ¼ vij

�� ���� ��. Let this
matrix belong to a set of admissible controls �V . The set �V describes the Principal’s
capabilities to influence certain mutual connections of agents and also the existing
resource constraints.

First, consider the case in which the Principal applies a single control at the
initial step. As a result, expression (2.55) takes the form

xt ¼ AþVð Þtx: ð2:56Þ

Note that the new influence matrix (A + V) of the system must be also stochastic.
This leads to the following constraints on the choice of V:

8i 2 N :
P
j2N

vij ¼ 0;

8i; j 2 N : �aij � vij � 1� aij:

(
ð2:57Þ

Denote by V̂ the set of all matrices of dimensions n � n that satisfy conditions
(2.57).

Assume the Principal’s goal function U(xt, V)—the control efficiency criterion—
depends on the opinions of all agents at step t and also on the control matrix. Then
the control problem is to choose an admissible control matrix that maximizes the
efficiency criterion:

U xt;Vð Þ ! max
V2�V \ V̂

:

Example 2.25 Get back to the social network of three agents considered in
Examples 2.17 and 2.18. Assume at the initial step the Principal may vary (increase
or decrease) the degree of trust of agent 2 to agent 3 at most by a given constant D,
where D � min {a, 1 − a}. Therefore, the set of admissible controls consists of
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the matrices V ¼
0 0 0
0 �v v
0 0 0

0
@

1
A, where |v| � D. Let the Principal’s goal be the

maximal total opinion of all agents at a fixed step t: U ¼ xt1 þ xt2 þ xt3 ! max
vj j �D

.

Direct calculations yield

xt ¼ ðAþVÞtx ¼
ð1� a� vÞt�1x2 þ ½1� ð1� a� vÞt�1	x3
ð1� a� vÞtx2 þ ½1� ð1� a� vÞt	x3

x3

0
@

1
A:

Hence,

U ¼ xt1 þ xt2 þ xt3 ¼ ½ð2� a� vÞð1� a� vÞt�1	x2
þ ½3� ð2� a� vÞð1� a� vÞt�1	x3

¼ 3x3 þð2� a� vÞð1� a� vÞt�1ðx2 � x3Þ:

Based on this formula, we may draw the following conclusions.

(a) If x2 > x3, the Principal’s optimal control is v = −D;
(b) If x2 < x3, the Principal’s optimal control is v = D;
(c) If x2 = x3, the Principal has no influence on situation (formally speaking, any

admissible control is optimal). •

In the general case, the Principal may apply control at different steps, with
specific constraints for each step.

For step s, designate as �V s the set of admissible controls and as Vs the control
matrix itself. Then the influence matrix at step t is calculated by

At ¼ Aþ
Xt
s¼0

Vs; ð2:58Þ

while the recursive formula of network states can be written as

xtþ 1 ¼ ðAt þVtÞxt: ð2:59Þ

On a planning horizon T, control matrices V s; s ¼ 0; . . .; T � 1, are admissible
only if all the corresponding matrices At; t ¼ 1; . . .; T � 1, are stochastic in rows:

8i 2 N; 8t 2 f0; . . .; T � 1g: P
j2N

vtij ¼ 0;

8i; j 2 N; 8t 2 f0; . . .; T � 1g: � aij �
Pt
s¼0

vtij � 1� aij:

8><
>: ð2:60Þ

Denote by V̂ðTÞ the set of all finite sequences of matrices V0; . . .;VT�1ð Þ of
dimensions n � n that satisfy conditions (2.60).
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With (2.58), relationship (2.56) takes the form

xT ¼
YT�1

t¼0

AT�t�1

 !
x:

Assume the Principal’s goal function depends on the resulting opinions of all
agents at step T and also on the control matrices at steps 0, …, T − 1. Then the
control problem is to choose an admissible sequence of control matrices that
maximizes the efficiency criterion:

U xT ;V0; . . .;VT�1� �! max
V0 2 �V0; . . .;VT�1 2 �VT�1

ðV0; . . .;VT�1Þ 2 V̂ðTÞ

: ð2:61Þ

The general control problem (2.61) is rather difficult. So it seems promising to
identify and analyze some special cases with good practical interpretations.

Also note another distinctive feature of trust control as follows. If at an initial
step the opinions of agents belong to some interval, they will stay there under any
control. Let us state this fact rigorously.

Proposition 2.8 Let the Principal apply trust control. Then, for any t = 0, 1, …
and any i 2 N,

xmin � xti � xmax; ð2:62Þ

where xmin ¼ minfx01; . . .; x0ng; xmax ¼ maxfx01; . . .; x0ng:
Proof of Proposition 2.8 Denote by ~At the stochastic matrix figuring in the
recursive formula of expression (2.59): ~At ¼ At þVt:

Prove by induction on t. The base case: for t = 0, inequality (2.62) holds by the
definition of xmin and xmax. The inductive step: let (2.62) be true for all i 2 N at
some step t. Since

P
j2N ctij ¼ 1 for any i 2 N, write the opinion of agent i at step

(t + 1) using the elements of the matrix ~At ¼ ctij

��� ��� as xtþ 1
i ¼Pj2N ctijx

t
j.

The right-hand side of this expression satisfies the following chain of
inequalities:

xmin ¼
X
j2N

ctijxmin �
X
j2N

ctijx
t
j �
X
j2N

ctijxmax ¼ xmax:

Hence, xmin � xtþ 1
i � xmax. The proof of Proposition 2.8 is complete.

Corollary 2.8.1 Assume at the initial step the opinions of all agents coincide with
each other. If the Principal applies trust control, the opinions still remain the same
for all subsequent steps.
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For proving Corollary 2.8.1, just let xmin ¼ xmax under the hypotheses of
Proposition 2.8.

As a matter of fact, Proposition 2.8 considerably restricts the Principal’s capa-
bilities to achieve his/her goals with trust control: the opinions stay within the range
xmin; xmax½ 	 under any controls. However, the following result is also the case.

Proposition 2.9 Assume there are no constraints on the Principal’s admissible
controls. Then an arbitrary value x
 2 xmin; xmax½ 	 can be implemented as the
opinion of each agent using trust control in a single step.

Proof of Proposition 2.9 If xmin ¼ xmax, this fact is obvious (see Corollary 2.8.1).
Let xmin\xmax and consider a given value x
 2 xmin; xmax½ 	. Find c from the rela-
tionship x
 ¼ c xmin þð1� cÞxmax, i.e.,

c ¼ xmax � x


xmax � xmin
:

Next, let k 2 N and l 2 N be such that xk = xmin and xl = xmax. Define the control
matrix V ¼ vij

�� ���� �� in the following way: for all i 2 N, vik ¼ c� aik; vil ¼ 1� c
�ail, and vij = −aij, where j 2 Nn k; lf g.

Then all elements of the column vector x1 = (A + V) x are x* becauseX
j2N

ðaij þ vijÞxj ¼ cxk þð1� cÞxl ¼ x
:

Consequently, the opinion x* has been implemented as the consensus of all
agents in a single step. The proof of Proposition 2.9 is complete.

Concluding this section, we emphasize that an independent analysis of reputa-
tion control and trust control is convenient in theoretical terms. In practice, these
control approaches should be (and often are) applied jointly. So further investiga-
tions will be focused on the development of integrated control models based on the
results established in Sects. 2.2 and 2.3 (opinion control) and Sects. 2.1, 2.4 and 2.5
(trust/reputation).

2.6 Informational Control and Network Structure14

The case of Principal’s complete awareness. Following [45], consider a situation
(see the model in Sect. 2.1) in which the agents change their opinions in accordance
with the linear law

14This section was written jointly with D.N. Fedyanin.
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xsi ¼
X
j

aijx
s�1
j ; i 2 N: ð2:63Þ

Assume the Principal is interested in the maximal total value of the agents’
characteristics

P
i2N x1j . For achieving his/her goal, at the initial step the Principal

applies controls ui, thereby changing the characteristics of all agents. Consequently,
the total resulting variation of the agents’ characteristics makes up

F ¼
X
j2N

ðA1uÞj ¼
X
j2N

X
i2N

a1ij

 !
uj ¼

X
j2N

wjuj; ð2:64Þ

where u = (u1,…,un).
The function F(u) in (2.64) is the Principal’s utility function subject to maxi-

mization. Clearly, under limited control resources (e.g., when just k among
n components of the vector u are nonzero), the Principal should affect the agents
with higher influence levels. Indeed, this would guarantee greater payoff for the
Principal.

In the sequel, the following situation will be studied under different types of the
Principal’s awareness. The Principal can apply unit control (value 1) to k agents
only, where 1 � k < n. The two questions of interest are

(1) What is the optimal control strategy of the Principal?
(2) Which network structures are (most or least) beneficial to the Principal?

With complete awareness about the influence levels of all agents, the Principal
should apply control to the k most influential agents (see the discussion above). The
Principal’s benefit (goal) will be identified with the maximal value of his/her utility
function (2.64).

The following intermediate result will be useful for further exposition.

Lemma 1 For any natural number n and any nonnegative real numbers wi,
i 2 N ¼ f1; . . .; ng, such that

P
i2N wi ¼ n, there exists a direct influence matrix in

which the influence level of agent i is wi.

Proof of Lemma 1 Choose a natural number n and nonnegative real numbers wi,
i 2 N, such that

P
i2N wi ¼ n. Construct the matrix A of the elements

aij ¼ wj

n
:

This is a stochastic matrix and hence a direct influence matrix in a certain
network. At the same time, this matrix has invariance with respect to multiplication
by itself:
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X
k2N

aikakj ¼
X
k2N

wk

n
wj

n
¼wj

n2
X
k2N

wk ¼ wj

n
¼ aij:

Therefore, A1 ¼ A, and the influence levels of the agents are

X
i2N

aij ¼
X
i2N

wj

n
¼ wj

n

X
i2N

1 ¼ wj:

Thus, the matrix A represents the desired direct influence matrix. •
Now, it is possible to establish a couple of propositions that describe the least

and most beneficial networks from the Principal’s viewpoint.

Proposition 2.10a Under the Principal’s complete awareness, the most beneficial
network to him/her is the one in which the influence levels of at most k agents are
nonzero.

Proof of Proposition 2.10 The maximal value of the Principal’s utility function
(2.64) is n. Really,

F ¼
X
j2N

wjuj �
X
j2N

wj ¼ n:

This value is achieved if uj = 1 for all j such that wj > 0. •
On the other hand, the least beneficial network is characterized by

Proposition 2.10b Under the Principal’s complete awareness, there exists a
unique least beneficial network to him/her in which the influence levels of all agents
coincide with each other:

w1 ¼ � � � ¼ wn ¼ 1: ð2:65Þ
Proof of Proposition 2.10b Assume on the contrary that there exists a network that
violates condition (2.65), being the least beneficial to the Principal. Without loss of
generality, rearrange the agents in the non-ascending order of their influence levels.
The resulting network satisfies the inequality w1 > wn and hence, for some index
l 2 N,

w1 ¼ � � � ¼ wl [wlþ 1 � � � � �wn: ð2:66Þ

On the strength of Lemma 1, it is possible to construct a network with the
following property: first l agents have smaller influence levels while the rest (from
l + 1 to n inclusive) higher influence levels. Moreover, this is done without vio-
lating expressions (2.63) and (2.66). In such a network, the Principal’s goal function
takes a smaller value than in the original one. This contradicts the hypothesis that
the original network is the least beneficial to the Principal. •

The case of unaware Principal. Now, consider a situation in which the
Principal knows nothing about the influence levels of specific agents. So he/she
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applies the same unit control to k randomly chosen agents from the set
N (1 < k < n). As before, the Principal seeks to maximize the sum of the resulting
characteristics of all agents.

In the case of the unaware Principal, the controls ui, i = 1,…,n, are random
variables, each taking value 0 or 1 so thatX

i2N
ui ¼ k:

As the Principal chooses k random agents among n ones, the probability of the
event ui = 1 (the unit control is applied to agent i) makes up k/n. The expected
value (mean) of ui is the same:

pðui ¼ 1Þ ¼ Eui ¼ k
n
:

The Principal’s utility

F ¼
X
j2N

wjuj

becomes a random variable too. Using the linear property of mathematical
expectation, we obtain the following formula for the expected value of F:

EF ¼ E
X
j2N

wjuj

 !
¼
X
j2N

wjEðujÞ ¼ k
n

X
j2N

wj ¼ k
n
� n ¼ k:

Therefore, the Principal’s mean payoff is independent of the agents’ influence
levels. In other words, on the average the Principal obtains the same result irre-
spective of the mutual influence levels of all agents. Note that this result coincides
with the least beneficial one over all possible network structures in the case of
complete awareness, see the previous paragraph.

Variance is another important characteristic of the Principal’s utility. By standard
assumption, a rational control subject strives to minimize the utility variance under
uncertain decision conditions. So let the Principal be interested in small utility
variance.

Proposition 2.11 Let the Principal be unaware of the influence levels of all agents.
Then the most beneficial network to him/her in terms of minimal utility variance is
the one with the same influence levels of all agents. His/her least beneficial network
is the one that contains a single agent with a nonzero influence level.

Proof of Proposition 2.11 Recall that the random variables ui, i = 1,…,n, are
pairwise dependent. Hence, the variance DF of the Principal’s utility is calculated
by (e.g., see the book [191]):
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DF ¼ D
X
i2N

wiui

 !
¼
X
i2N

w2
iDðuiÞþ 2

X
i[ j

wiwjcovðui; ujÞ: ð2:67Þ

By analogy, the variance of the variables ui, i = 1,…,n, takes the form

Dui ¼ Eðu2i Þ � E2ðuiÞ ¼ k
n
� k

n


 �2

:

The random product uiuj is 1 or 0. Its mean—the probability that the random
product is 1—makes up

EðuiujÞ ¼ pðuiuj ¼ 1Þ ¼ pðui ¼ 1Þpðuj ¼ 1jui ¼ 1Þ ¼ k
n
� k � 1
n� 1

:

Here p(A|B) denotes the conditional probability of A given B. Consequently,

covðui; ujÞ ¼ E ðui � EuiÞðuj � EujÞ
� 	 ¼ Euiuj � ðEuiÞ2

¼ k
n
� k � 1
n� 1

� k
n


 �2

:

Substituting the values Dui and cov(ui,uj) into (2.67) yields

DF ¼
X
i

w2
i �

k
n

1� k
n


 �
þ 2

X
i[ j

wiwj
k
n
� k � 1

n� 1
� k
n


 �

¼ kðn� kÞ
n2

X
i

w2
i

 !
� 2kðn� kÞ

n2ðn� 1Þ
X
i[ j

wiwj

 !
:

The last expression can be written in compact form using the algebraic formulaX
i[ j

ðwi � wjÞ2 ¼ ðn� 1Þ
X
i2N

w2
i � 2

X
i[ j

wiwj: ð2:68Þ

The total number of terms in the left-hand side of (2.68) is n(n − 1)/2. So define
Δ as the mean-square difference of the influence levels of noncoinciding agents, i.e.,

D ¼ 2
nðn� 1Þ

X
i[ j

ðwi � wjÞ2:

With this notation and (2.67), the variance takes the form

102 2 Models of Informational Control in Social Networks



DF ¼ kðn� kÞ
2n

D:

Evidently, under fixed n and k, the variance DF achieves minimum if Δ = 0, i.e.,
all agents have the same influence levels.

Without loss of generality, rearrange the agents in the non-ascending order of
their influence levels: w1 � � � � �wn.

To find the maximal value of DF, just demonstrate that Dmax ¼ 2n is achieved if

w1 ¼ n; wi ¼ 0; i[ 1: ð2:69Þ

(In practical interpretation, agent 1 possesses all influence in the network.)
Indeed, we have the relationship

n2 ¼
X
i2N

wi

 !2

¼
X
i2N

w2
i þ 2

X
i[ j

wiwj;

which impliesX
i[ j

ðwi � wjÞ2 ¼ ðn� 1Þ
X
i2N

w2
i � 2

X
i[ j

wiwj

¼ ðn� 1Þ n2 � 2
X
i[ j

wiwj

 !
� 2

X
i[ j

wiwj

¼ n2ðn� 1Þ � 2n
X
i[ j

wiwj:

Under condition (2.69), the right-hand side of this formula achieves the maxi-
mum n2(n–1), and

D ¼ 2
nðn� 1Þ

X
i[ j

ðwi � wjÞ2 ¼ 2
nðn� 1Þ n

2ðn� 1Þ ¼ 2n:

Thus, the maximal value of DF is k(n–k) corresponds to the network structure
with a single agent of nonzero influence level. •

The case of Principal’s partial awareness. Finally, we will analyze the situ-
ation in which the Principal has partial awareness as follows.

Let the network structure be decomposed into nonintersecting informational
subsets so that, for each subset, the Principal does not distinguish among agents but
knows the number of agents and their total influence level.

Denote these subsets by Gi, i 2 M ¼ 1; 2; . . .;mf g:
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G1 [ � � � [Gm ¼ N:

In this case, the Principal’s strategy is to choose the impact on each informa-
tional subset, i.e., the number ki of agents from the subset Gi; i 2 M, to be con-
trolled. Note that in each subset the Principal takes randomly chosen agents. The
total number of agents is still equal to k. Of course, ki does not exceed the number ni
of agents in the informational subset Gi:X

i2M
ki ¼ k; ki � ni; i 2 M:

Similar to the case of the unaware Principal, his/her utility is a random variable
with the expected value

EF ¼ E
X
j2N

wjuj

 !
¼ E

X
i2M

X
j2Gi

wjuj

 !
¼
X
i2M

X
j2Gi

wjE uj
� �

¼
X
i2M

X
j2Gi

wj
ki
ni

¼
X
i2M

ki
1
ni

X
j2Gi

wj

 !
¼
X
i2M

ki�wi;

ð2:70Þ

where �wi indicates the average influence level of the agents from the subset Gi.
Note that expression (2.70) is analogous to Formula (2.64). It implies that the

Principal should affect the subsets with the maximal average influence level. The
most beneficial network to the Principal has the following structure.

Proposition 2.12a Under the Principal’s partial awareness, the most beneficial
network to him/her is the one in which the total number of agents in informational
subsets with nonzero average influence levels does not exceed k.

Proof of Proposition 2.12 The maximal expected value of the Principal utility
(2.70) is

EF ¼
X
i2M

ki�wi ¼
X
i2M

ki
ni

X
j2Gi

wj �
X
i2M

X
j2Gi

wj ¼
X
j2N

wj ¼ n:

This value is achieved if ki = ni for all i 2 M such that �wi [ 0. •
On the other hand, the least beneficial network is as follows.

Proposition 2.12b Under the Principal’s partial awareness, there exists a unique
least beneficial network to him/her in which the average influence levels of all
informational subsets coincide:

�w1 ¼ ::: ¼ �wm ¼ 1: ð2:71Þ
Proof of Proposition 2.12 Without loss of generality, rearrange the subsets in the
non-ascending order of their average influence levels:
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�w1 � :::� �wm

Assume on the contrary that there exists a network that violates condition (2.71),
being the least beneficial one to the Principal. This network satisfies the inequality
�w1 [ �wm and hence, for some index l 2 M,

�w1 ¼ � � � ¼ �wl [ �wlþ 1 � � � � � �wm: ð2:72Þ

In accordance with Lemma 1, it is possible to construct a network with smaller
average influence levels of first l informational subsets and larger average influence
levels of the rest subsets with indexes from l + 1 and n inclusive. Moreover, this
network will satisfy relationships (2.63) and (2.72). The Principal’s goal function
will take a smaller value on this network in comparison with the original
counterpart. This obviously contradicts the fact that the original network is least
beneficial to the Principal. •

Actually, Propositions 2.12a and 2.12b are natural extensions of
Propositions 2.10a and 2.10b, respectively: informational subsets can be treated as
meta agents with set-average influence levels.

A promising line of further research is to study different types of the Principal’s
awareness about the structural properties of the network and related issues of
informational control efficiency.

2.7 Actional Model of Influence

Following the papers [91, 92], this section describes a formal model of actions
spreading through a social network and also an associated influence calculation
method. In this model, the basic element of analysis is an action performed by an
agent (a network user), which explains the term “actional.”

Network members are agents belonging to a fixed set

N ¼ 1; 2; . . .; nf g:

They choose actions from a fixed set of admissible action types

K ¼ 1; 2; . . .; kf g

at some times within an interval T. Possible types of actions include writing a post,
a comment for a post, etc. Denote by D the set of actions (writing a concrete post,
comment, and so on). By assumption, this set is finite.

Each action a 2 D is characterized by three parameters, namely, the agent
performing it, the type of this action and the corresponding time t:
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a i; j; tð Þ; i 2 N; j 2 K; t 2 T:

Define a function a(a) that associates each action a 2 D with a corresponding
agent a 2 N who performed it.

Next, consider a binary partial-order relation of the form “a causes b,” which is
defined on the action set and designated as

a ! b:

(Note that it is equivalent to “b is a consequence of a.”) For example, in a real
online social network, a corresponds to writing a post and b to writing a comment
for this post.

Suppose the binary relation satisfies the properties of reflexivity, anti-symmetry,
and transitivity.

If a ! b and a 6¼ b but there exists no c 2 D such that a ! c and c ! b, we will
say that a is a direct cause of b (equivalently, b is a direct consequence of a). As a
result, it is possible to separate a class of binary relations in which each action has at
most one direct cause. Such binary relations will be called unique.

We give an example of a nonunique binary relation. Let a be a post, b a com-
ment for this post, and c another post with the feature that b contains a reference to
c. Then, if a ! b and c ! b are assumed to hold, the binary relation is nonunique.

For a given set A�D, it is possible to define the set of all actions representing
the consequences of actions from A:

p Að Þ ¼ b 2 Dj9a 2 A : a ! bf g:

Note that, for all sets A�D, the inclusion A� p Að Þ holds by the reflexivity of
the binary relation.

Among all actions Δ, separate the set D0 of initial actions that are not the
consequences of any other action:

D0 ¼ a 2 Dj8b 2 D b ! að Þ ) a ¼ bð Þf g:

Note that, for unique binary relations, each action has a unique initial action as
its cause. Therefore, the sets p(A) and p(B) do not intersect for any nonintersecting
sets A, B 2 D0.

Recall that there exist many calculation methods for user influence levels in
online social networks. However, generally they ignore why and from whose
viewpoint an influence level is estimated. Meanwhile, these issues seem extremely
important if influence level is treated as the capability of stimulating others to
certain actions.

Therefore, consider the influence level calculation problem from the viewpoint
of a control subject (a Principal). Being guided by his/her personal interests, the
Principal chooses which actions of agents in a social network are significant (they
can be desired or undesired for the Principal). To formalize the Principal’s
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viewpoint in influence calculation, introduce the significance of an action set as a
function U(S) defined by

U: 2D ! 0; þ1½ Þ:

Naturally enough, if a certain action set is supplemented by other actions, then
its significance increases (at least, does not decrease). So the significance of an
action set (in the sequel, simply significance) represents a monotonically increasing
function: if A � B, then U Að Þ�U Bð Þ. In addition, accept an obvious hypothesis
that at least some actions have a positive significance, i.e., U Dð Þ[ 0.

An important class of significance functions consists of the additive functions
that satisfy the relationship

UðA[BÞ ¼ U Að ÞþU Bð Þ

for any nonintersecting sets A, B 2 D.
Now, consider an approach to calculate influence within the actional model. We

will define the influence of a meta-agent (or a meta-user) representing any none-
mpty subset of the agent set N. In a real social network, these subsets can be formed
in different ways, using initially given individual properties or characteristics of
separate agents (e.g., during registration of a new user in the network) or using
precalculated parameters (including the ones that depend on mutual relations within
the network). We emphasize that a meta-agent is each separate agent i 2 N (the
singleton {i}) and also the set of all agents N.

For each meta-agent I�N, define the set d�D of actions performed by him/her/
it (i.e., by all agents belonging to the set I) in the form

dI ¼ a 2 DjaðaÞ 2 If g:

and also the set of initial actions performed by him in the form

d0I ¼ a 2 D0jaðaÞ 2 I
� �

:

Speaking informally, the notion of influence can be comprehended as follows.
The influence level of a meta-agent I � N on a meta-agent J � N is high if the
activity of agents from the set J is to a large extent conditioned by the activity of
agents from the set I. This notion can be formalized in different ways, depending on
the specifics of a practical problem under study. In this paper, we proceed from the
following hypotheses:

(1) of major interest is the influence of initial actions, i.e., the users who introduce
new information to a network (in other cases, it is also possible to consider the
efficient disseminators of information from other users);

(2) the influence of the whole network (i.e., the set of all agents in it) on each
meta-agent is 1, i.e., the total influence on each meta-agent is normalized.
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Under the accepted hypotheses, the influence function of a meta-agent I on a
meta-agent J can be defined as

vðI; JÞ ¼
Uðpðd0I Þ \ dJÞ

UðdJ Þ ; UðdJÞ[ 0;
0; UðdJÞ ¼ 0:

(

In the sequel, we assume that UðdJÞ[ 0 for any J�N (i.e., the agents with zero
total significance of actions are eliminated from consideration). Then, obviously

vðI; JÞ� Uðpðd0NÞ \ dJÞ
UðdJÞ ¼ vðN; JÞ ¼ 1:

In an important special case, the meta-agent J coincides with the agent set (i.e.,
J = N) and the influence function therefore reflects the influence of a meta-agent
I on the whole network, which will be called the influence level of the meta-agent
I and denoted by e(I):

eðIÞ ¼ vðI;NÞ ¼ Uðpðd0I ÞÞ
UðDÞ :

Below we present some properties of the influence function introduced in this
way.

Proposition 2.13 The influence function v I; Jð Þ is monotonic in the first argument,
i.e., for I1 � I2 and any J, we have the inequality v I1; Jð Þ� v I2; Jð Þ.
Proof Follows from the chain of relationships

I1 � I2 ) d0I1 � d0I2 ) p d0I1

� �
� p d0I2

� �
) p d0I1

� �
\ dJ � p d0I2

� �
\ dJ

) U p d0I1

� �
\ dJ

� �
�U p d0I2

� �
\ dJ

� �
) vðI1; JÞ� vðI2; JÞ: �

Proposition 2.13 means that, the “larger” is a meta-agent (i.e., the more agents it
includes), the higher is his/her/its influence regardless of other circumstances.

Proposition 2.14 If the binary relation is unique and the significance function is
additive, then the influence function is additive in the first argument, i.e., for any
I1; I2; J �N such that I1 \ I2 ¼ £, we have the equality

vðI1 [ I2; JÞ ¼ v I1; Jð Þþ v I2; Jð Þ:
Proof Follows from the chain of relationships
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vðI1 [ I2; JÞ ¼
U p d0I1 [ I2

� �
\ dJ

� �
UðdJÞ ¼

U p d0I1

� �
[ p d0I2

� �� �
\ dJ

� �
UðdJÞ

¼
U p d0I1

� �
\ dJ

� �
[ p d0I2

� �
\ dJ

� �� �
UðdJÞ ¼ð
Þ

¼
U p d0I1

� �
\ dJ

� �
UðdJÞ þ

U p d0I2

� �
\ dJ

� �
UðdJÞ ¼ vðI1; JÞþ vðI2; JÞ:

Here a key role is played by the equality (*), which appears from the additive

property of the function U together with the fact that the sets p d0I1

� �
and p d0I2

� �
(and hence the sets p d0I1

� �
\ dJ and p d0I2

� �
\ dJ) do not intersect due to the

uniqueness of the binary relation. •
As easily seen, in this case the influence level of a meta-agent is also an additive

function: the equality eðI1 [ I2Þ ¼ e I1ð Þþ e I2ð Þ holds for any nonintersecting sets
I1; I2 �N.

Some examples of influence level calculation for real online social networks can
be found in the papers [91] (Facebook) and [92] (VKontakte).

Consider an example of influence level calculation for Vkontakte, a popular
online social network in the RuNet (vk.com).15 Let the posts containing the
“Nazarbaev16” keyword (in any case-form), their reposts as well as the comments
and likes for them be significant from the Principal’s viewpoint. As the time interval
T, choose year 2015—from 0 h 0 min 0 s January 01, 2015, to 23 h 59 min 59 s
December 31, 2015).

For this set-up, it suffices to consider the following types of actions: (1) writing
an original post or making a repost; (2) writing a comment for a post; (3) putting a
like for a post; (4) putting a like for a comment. Hence, the set K consists of four
elements: K = {1, 2, 3, 4}.

Assume the binary relation of causality a ! b holds in the following cases: a—
writing a post, b—writing a comment for this post; a—writing a post or a comment,
b—putting a like; a—writing a post, b—making its repost. Besides, the relation of
causality holds if a and b coincide.

Under the described conditions, each action is assessed independently, and
therefore the significance of an action set S�D depends additively on each action
from this set:

UðSÞ ¼
X
a2S

UðaÞ:

15The anonymized data for this study were provided by DSS Lab (dss-lab.ru).
16The surname of the President of the Republic of Kazakhstan.
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Let UðaÞ ¼ 1= daðaÞ
�� ��, where |�| denotes set cardinality, if a is a post mentioning

the keyword that was written within the time interval T, or a comment for such a
post that was written within T, or a like for such a post or comment that was put
within T; otherwise, let U að Þ ¼ 0. This definition means that the total significance
of the actions of each agent is 1 (in other words, each user has the same significance
from the Principal’s viewpoint).

Consequently, we have described all necessary data to calculate the influence
levels of users. Here are some calculations for separate users (i.e., for singletons I).

As it turned out, the total influence level of 1% (!) of most influential users
makes up 94–96% of the total influence level of all users; the total influence level of
2% of most influential users makes up 98% of the total influence level of all users;
and the total influence level of 5% of most influential users makes up even 100% of
the total influence level of all users. The graph in Fig. 2.32 demonstrates the share
of total influence level as a function of the percentage of most influential users.

Therefore, the influence level calculation method suggested in this section
allows to identify a small set of users with a highest influence on the actions of
other users in an online social network from the Principal’s viewpoint (topics of
interest and preferences).

Finally, note that the actional model is a family of methods covering various
aspects of influence rather than a fixed influence calculation procedure. For
example, if users have different significance for the Principal, then this feature can
be considered through an appropriate modification of the influence function.

Fig. 2.32 Share of total influence level as function of percentage of most influential users
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Chapter 3
Models of Informational Confrontation
in Social Networks

The paper [161] identified five levels for the description and analysis of active
network structures (social networks, mobs, etc.) as follows. At the first (lowest)
level, a network is considered in toto; such a description gives no details, yet being
essential for a fast analysis of the general properties of these objects. At the second
level, the structural properties of a network are examined using the framework of
graph theory. Next, at the third level, the informational interaction of agents is
analyzed, with a wide range of applicable models (Markovian models, finite-state
automata, diffusion of innovations, infection models, to name a few). At the fourth
level, informational control problems are formulated and solved. Finally, at the fifth
level, informational confrontation is considered as the interaction of subjects
affecting a social network for their individual goals. A model adopted at each level
of this hierarchy takes into account the outcomes of the previous levels. Therefore,
a prerequisite for passing to a next level is the existence of fairly simple inter-
connected models at the previous levels that are adequate to a modeled reality.

Informational confrontation, which is described at the fifth level, needs simple
results on the informational interaction processes and informational control of
agents. The first class of models with a complete chain between the lower and upper
levels is the models of social networks in terms of consensus problems (or the
so-called Markovian models). In Sects. 3.1 and 3.2 of this book, we introduce the
corresponding game-theoretic models of informational confrontation (also see the
models [93]).

Section 3.1 is dedicated to the models of distributed informational control for
social network members. The subjects exerting an informational influence on agents
often have noncoinciding interests, and the conditions of interests coordination are
established for them.

Section 3.2 deals with the model of informational confrontation between two
control subjects with noncoinciding interests (defender and attacker). Informational
epidemic, a phenomenon of opinion spreading from one active agent to another
passive agent in a network, as well as protection against it are studied. This
informational confrontation problem is reduced to a bimatrix game. For a special
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case of social networks described by complete communication graphs, the resulting
bimatrix game has at least one Nash equilibrium, as proved below. Also we
demonstrate that strategic reflexion in the bimatrix game decreases the number of
Nash equilibria (at most two) and may improve the payoffs of players.

The second fruitful example is the game-theoretic modeling of informational
contagion “superstructed” over the threshold models of a mob, the approach cul-
tivated in Sect. 3.3. The model suggested in [27] treats a mob as a set of agents with
conformity behavior [87]: making their binary choice (being active or passive),
such agents rely on the decisions of other agents. The authors [29] introduces the
stochastic models of mob control in which a given share of agents is randomly
“excited” (made active) and “immunized” (made passive). Assume such controls
are applied by different subjects with noncoinciding individual preferences on the
“equilibrium” state of a mob. In this case, the subjects get involved into informa-
tional confrontation described by a game-theoretic setup.

Note that the game-theoretic models of informational confrontation over active
networks have several applications, namely, the informational safety of online
social networks, the counteraction to a destructive informational influence on social
groups of different scale, the prevention of their massive illegal actions, and others
(the details can be found in this book and also in [27, 168]).

3.1 Informational Confrontation: Distributed Control
and Interests Coordination

Game-theoretic model of informational confrontation. General setup. Consider
a set of players who can influence the initial opinions of agents. Each player is
interested in a certain resulting opinion of all agents. In this model the agents are
passive: they change opinions in accordance with a linear law taking into account
the opinions of other agents. In contrast to the agents, the players are active and
have individual goals; by choosing their actions, the players affect the agents.1 Let
us describe the game of players.

Introduce the following notations: M = {1, 2, …, m} as the set of players;
uij 2 Uij = [– rij, Rij] as the action of player j that is intended to change the opinion
of agent i, where rij, Rij � 0; i2 N, j 2 M; u = (u1, u2, …, un), ui ¼

P
j2M uij, as

the influence (control) vector; u ¼ uij
�� ��; uj ¼ u1j; u2j; . . .; unj

� � 2 Uj ¼
Q

i2N Uij;
finally, gj (X): ℜ

n ! ℜ1 as the goal function of player j.
Assume the influences of players on the opinion of each agent are additive. Then

the resulting opinion of agent i makes up

1Within this approach, it is possible that some agents coincide with players, acting as control
subjects and controlled systems.
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XiðuÞ ¼
X
j2N

A1
ij x0j þ

X
k2M

ujk

" #
¼

X
j2N

A1
ij x

0
j þ

X
j2N

A1
ij

X
k2M

ujk; i 2 N: ð3:1Þ

In the general case, each player can influence the opinions of all agents (if not,
the lower and upper of the corresponding intervals Uij are set equal to 0).

Denoting Gj(u) = gj(X1(u), X2(u), …, Xn(u)), j 2 M, and supposing that the
players choose their actions one-time, simultaneously and independently, we nat-
urally arrive at a normal-form game Г = (M, {Uj}j 2 M, {Gj(�)}j 2 M). This game is
defined by specifying the set of players, their admissible actions and goal functions
[80]. Using a normal-form game, it is possible to find equilibria, to design coop-
erative, repeated and other types of games (see the classification in the book [80]).

Example 3.1 The players have the linear goal functions gjðXÞ ¼
P

i2N bjix
0
i , j 2 M.

For the resulting opinions (3.1), these functions take the form

GlðuÞ ¼
X
i2N

bli
X
j2M

A1
ij x

0
j þ

X
i2N

bli
X
j2N

A1
ij

X
k2M

ujk; l 2 M: ð3:2Þ

The actions chosen by the players appear in the second term only. Denote
clj ¼

P
i2N bliA

1
ij ; l 2 M. Since the goal functions are linear in the actions of

players, the game under consideration has a dominant strategy equilibrium ud [80]
in which player l chooses an action maximizing

P
j2M clj ujl regardless of the

actions of all other players:

udjl ¼
�rjl if clj\0;
Rjl if clj � 0;

�
; j 2 N; l 2 M: ð3:3Þ

In other words, each player applies the maximal possible influence to each agent,
and the sign of this influence depends on the resulting variations in the opinion of
this agent (the values of these variations for the players are defined by the weights
{clj}). •

Example 3.2 Two players pursue noncoinciding interests. Renumber the agents so
that player 1 can influence the initial opinion of agent 1 and player 2 the initial
opinion of agent 2. Denote these additive influences by u1 2 U1 and u2 2 U2,
respectively.

Then the resulting opinions of the agents have the form

Xi u1; u2ð Þ ¼
X
j2N

A1
ij x

0
j þA1

i1 u1 þA1
i2 u2; i 2 N: ð3:4Þ

Let X(u1, u2) be the opinion vector of all agents that consists of components
(3.4). The Nash equilibrium u�1; u

�
2

� �
satisfies the conditions
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8 u1 2 U1 : g1 X u�1; u
�
2

� �� �� g1 X u1; u
�
2

� �� �
;

8u2 2 U2 : g2 X u�1; u
�
2

� �� �� g2 X u�1; u2
� �� �

:
ð3:5Þ

The resulting opinions of all agents have a rather simple additive dependence on
the controls (actions of players), see relationship (3.4). So, based on this model, it is
possible to consider games with a fixed sequence of moves (hierarchical games)
[71, 80], which are often interpreted as defense–attack games.

The model of Example 3.2 can be easily extended to the case in which each
player can influence the initial opinions of an arbitrary set of agents. •

Example 3.3 Each of two players can influence the initial opinion of one agent
from a corresponding set N1�N or N2�N, respectively, where N1 \ N2 = ∅. Then
the players have to choose an appropriate agent for influence. In this case, the sets
of admissible actions are finite. After calculation of the corresponding payoffs, we
obtain a bimatrix game and find in analytic form an equilibrium in the class of pure
and/or mixed strategies. •

Note that the game-theoretic model of informational confrontation under study
proceeds from the assumption that the players are choosing their actions one-time,
simultaneously and independently of each other, thereby playing a normal-form
game [80]. This assumption remains in force for the distributed control model
described below.

Distributed control. In many real systems, a given agent is simultaneously
subordinated to several control subjects—Principals—at the same or different
hierarchical levels. The first case is called distributed control (also known as agency
in contract theory [19, 144]) while the second interlevel interaction [169]. A prime
example of distributed control is matrix control structures [165].

This paragraph considers distributed control in social networks: generally, the
subjects exerting an informational influence on network members have noncoin-
ciding interests.

A distributed control system (DCS) that includes k control subjects (Principals)
and a single controlled subject (agent) can be described by the schematic diagram in
Fig. 3.1.

Г0(Гi(HRB))
(i = 1, 2, 3)

…

A

P1 P2 Pk

Fig. 3.1 Structure of
distributed control system
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In a DCS, the Principals controlling the agent are involved in a “game,” with a
complicated equilibrium. (In Fig. 3.1, this normal-form game is denoted by Г0; it is
played over a set of hierarchical games (Г1, Г2 or Г3 [71]) under the hypothesis of
rational behavior (HRB) accepted for the agent [80]). Particularly, there exist two
stable modes of interaction among the Principals—cooperation and competition
[169].

In the cooperation mode, the Principals act jointly for achieving required results
of the agent’s activity with minimal resources.

In the competition mode, which occurs if the Principals’ goals differ appreciably,
the resources are spent inefficiently.

Following [165], consider an elementary (basic) model of a DCS and then use it
for the distributed control of social networks. Assume an organizational system
(OS) consists of a single agent and k Principals. The agent’s strategy is to choose an
action y 2 A, which incurs costs c(y). As the result of the agent’s activity, each
Principal i gains some income described by a function Hi(y), where
i 2 K = {1, 2, …, k} and K denotes the set of all Principals. Moreover, each
Principal i also bears costs ri(y) to change the opinions and/or actions of the agent
(i.e., the incentive paid to the agent). Thus, the goal function of Principal i has the
form

Uiðrið�Þ; yÞ ¼ HiðyÞ � riðyÞ; i 2 K: ð3:6Þ

The agent’s goal function is given by

f rið�Þf gð Þ ¼
X
i2K

riðyÞ � cðyÞ: ð3:7Þ

The sequence of moves is as follows. The Principals simultaneously and inde-
pendently choose what opinions of the agent are desired for them (thereby deter-
mining their cost functions). Then the agent chooses his/her action. For the
Principals’ game, further analysis will be confined to the set of Pareto-optimal Nash
equilibria. In this case [119, 169], the Principals’ strategies are

riðx; yÞ ¼ ki; y ¼ x
0; y 6¼ x

�
; i 2 K: ð3:8Þ

This means that the Principals agree to stimulate the agent’s choice of a specific
action x 2 A (plan) as well as to share their total costs in a Pareto optimal way, see
below. This mode of interaction among the Principals is said to be cooperation.

The conditions of Pareto optimality imply that the total costs of all Principals
under plan fulfillment are equal to the agent’s costs:X

i2K
ki ¼ cðxÞ: ð3:9Þ
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(As a matter of fact, this is the principle of costs compensation [165] extended to
distributed control systems).

For each Principal, the condition of beneficial cooperation may be stated as
follows. In the cooperation mode, each Principal gains the utility not smaller than as
if he/she motivated the agent independently (by compensating the agent’s costs to
choose the most beneficial action for this Principal). The utility of Principal i from
an “independent” interaction with the agent is defined by [165]

Wi ¼ max
y2A

HiðyÞ � cðyÞ½ �; i 2 K: ð3:10Þ

Construct the vector k = (k1, k2, …, kk) and denote by

S ¼ x 2 Aj9 k 2 <k
þ : HiðxÞ � ki �Wi; i 2 K;

X
i2K

ki ¼ cðxÞ
( )

ð3:11Þ

the set of such agent’s actions that can be implemented by the cooperation of all
Principals in a beneficial way. The set of pairs x 2 S and corresponding vectors k is
called the domain of compromise:

K ¼ x 2 A; k 2 <k
þ HiðxÞ � kij �Wi; i 2 K;

X
i2K

ki ¼ cðxÞ
( )

: ð3:12Þ

By definition the cooperation mode takes place if the domain of compromise is
non-empty: K 6¼ ∅. In the cooperation mode the agent obtains zero utility. Denote

W0 ¼ max
y2A

X
i2K

HiðyÞ � cðyÞ
" #

: ð3:13Þ

The main result of DCS analysis is as follows: the domain of compromise if
non-empty if and only if [169]:

W0 �
X
i2K

Wi: ð3:14Þ

Thus, condition (3.14) expresses an implementability criterion of the cooperation
mode. In a practical interpretation, with joint actions the Principals may gain a
greater total efficiency in comparison with their individual behavioral strategies.
The difference W0 �

P
i2K Wi can be treated as a measure of interests’ coordination

among the Principals and also as a rate of OS emergence.
If condition (3.14) fails (K = ∅), the Principals are interacting in the competition

mode characterized by the auction solution. Let the Principals be rearranged in the
ascending order of the values {Wi}: W1 � W2 � ��� � Wk. The winner is the first

116 3 Models of Informational Confrontation in Social Networks



Principal who compensates the agent’s costs and also offers him/her a utility greater
than W2 by an arbitrarily small value.

General procedure for interests coordination in distributed control systems.
This procedure includes the following steps.

(1) Describe the staff and structure of a system that consists of at least several
control subjects and one or several controlled agents at lower hierarchical
levels.

(2) Define the sequence of moves as follows: the Principals choose controls
simultaneously and independently of each other and report them to the
agents; then the latter choose actions under these controls, also simultane-
ously and independently of each other.

(3) Introduce the goal functions and admissible action sets of all system par-
ticipants. By assumption, the goal function of each agent is additive in the
Principals’ controls while the goal function of each Principal is additive in
the controls reported by him/her to different agents.

(4) Prove that, for the Principals playing their game with Pareto-optimal Nash
equilibria, it suffices to consider the quasi-compensatory strategies (3.8),
which decompose the interaction of agents in multiagent systems [165]. To
this effect, take advantage of the general results established in [119]: for any
Pareto-optimal strategy of any Principal, there exists another strategy of at
least the same efficiency with nonzero costs of this Principal at most at
k points.
Therefore, the problem to find a collection of functions is reduced to the
calculation2 of k + 1 parameters—the same incentive-compatible plan for
all Principals and the costs of each Principal k.

(5) Write the balance condition (3.9), stating that the total costs of all Principals
are precisely compensating the agent’s costs under plan fulfilment.

(6) For each Principal, calculate payoff (3.10) from his/her individual interac-
tion with the agent.

(7) Construct the domain of compromise (3.12).
(8) Calculate the maximal possible value of the total payoff of all Principals

from their joint activity, see (3.13).
(9) Verify condition (3.14), which guarantees that the domain of compromise is

non-empty.
(10:1) If condition (3.14) holds, then cooperation is possible, and the problem is

reduced to compromise design: choose a specific point within the domain of
compromise.

(10:2) If condition (3.14) fails, then the Principals are interacting in the competi-
tion mode, and the game has the auction solution. If the efficiency of this
solution is inacceptable, then analyze the feasibility of interests coordination

2If the Principals are controlling several (n � 2) agents, then the number of desired parameters
makes up n (k + 1).
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for the Principals using higher-level control subjects or the concept of
bounded rationality.

This procedure of interests coordination in distributed control systems is rather
general. We will employ it for informational control design in social networks.

Within the framework of the model described in Sect. 2.1, denote by
N = {1, 2, …, n} the set of agents belonging to a social network (members). The
agents influence each other, and the degrees of such influences are defined by their
reputations or trust. At an initial step, each agent has an opinion on some issue. The
initial opinions of all network members are described by a column vector y0 of
dimension n that consists of nonnegative initial opinions. The agents are interacting
over the social network by exchanging their opinions. The opinion of agent i at step
s is calculated by

ysi ¼
X
j2N

aijy
s�1
j : ð3:15Þ

Assume the opinions of all agents converge to a resulting opinion vector
Y ¼ lims!1 ys after very many interactions. Then

Y ¼ A1 y0: ð3:16Þ

Consequently, the resulting opinion vector of all social network members is
uniquely defined by their initial opinion vector and the influence/trust matrix. This
fact can be used to formulate and solve informational control problems: find pur-
poseful influences on the initial opinions of agents that guarantee required resulting
opinions. In the next paragraph, we will consider the problem of interests coordi-
nation for the subjects performing informational control.

Conditions of interests coordination for control subjects. Introduce the fol-
lowing notations:

• {Ni}i 2 K as the aggregate of all subsets of the set N, where Ni indicates the set of
agents for the informational influence of Principal i, where i 2 K;

• Kj ¼ k 2 Kj j 2 Nkf g as the set of all Principals with informational influences
on agent j, where j 2 N;

• ci(y
0, x) as the costs of agent i to change his/her opinion from y0i to xi; generally

speaking, these costs can be a function of the opinion vectors of all agents—the
vector y0 (the initial opinions before informational influences) and the vector
x (the initial opinions after informational influences), where i 2 N;

• Hi(x) as the preferences of Principal i over the set of agents’ opinions3, where
i 2 K;

3Of course, it would be natural to assume that the Principals’ preferences are defined over the set of
the resulting opinions of all agents. But, in accordance with (3.11), the resulting opinions are
uniquely determined by the initial ones.
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• rij(y
0, x) as the costs of Principal i to exert informational influences on agent j,

where j 2 Ni and i 2 K.

In a practical interpretation, Principals are applying informational controls to
agents, thereby changing their opinions. Note that the same agent can be influenced
by several Principals simultaneously (a distributed control system). Each Principal
tries to change the opinion of some agent for his/her own benefit. So an appropriate
model is required for the variations of agent’s opinions under such conflicting
impacts. Unfortunately, there exist no adequate formal models of this kind to date.
In this paragraph, we will establish the conditions of interests coordination for
control subjects and give answers to the following questions. In which situations
can the Principals agree about their actions? What opinions of the agents must be
formed by the Principals? (For each agent, the controls of all Principals must be
“consistent” in the sense of no contradictions).

The goal function of Principal i has the form

Ui rijð�Þ
� �

j2Ni
; y0; x

� 	
¼ HiðxÞ �

X
j2Ni

rijðy0; xÞ; i 2 K: ð3:17Þ

The goal function of agent j is given by

f rijð�Þ
� �

i2Kj
; y

� 	
¼

X
i2Kj

rijðy0; xÞ � ciðy0; xÞ: ð3:18Þ

The sequence of moves is as follows. The Principals simultaneously and inde-
pendently choose their informational influences (controls) and report them to the
agents. As before, further exposition will consider the class of Pareto-optimal Nash
equilibria, i.e., the Principals’ strategies have the form

rijðy0; xÞ ¼ kij; yj ¼ xj
0; yj 6¼ xj

�
; j 2 Ni; i 2 K: ð3:19Þ

So the Principals agree to cooperate, i.e., to form jointly the same opinion vector
x as well as to share the associated costs.

The conditions of Pareto optimality imply that the total costs of all Principals are
equal to the agent’s costs:

ciðy0; xÞ ¼
X
j2Ki

kji; i 2 N: ð3:20Þ

In accordance with condition (3.20), the Principals must distribute the costs to
change the opinion of each agent.

By analogy with expression (3.10), calculate
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Wi ¼ max
x

Hi xNi ; y
0
�Ni

� 	
�
X
j2Ni

ciðy0; xÞ
" #

; i 2 K ð3:21Þ

and

W0 ¼ max
x

X
i2K

HiðxÞ �
X
j2N

cjðy0; xÞ
" #

: ð3:22Þ

Construct the matrix k ¼ kij
�� ��, and denote by

S ¼ x 2 <n
þ 9 kj 2 <nk

þ : HiðxÞ �
X
j2Ni

kij �Wi; i 2 K; ~niðy0; xÞ ¼
X
j2Ki

kij; i 2 N

( )

ð3:23Þ

the set of such opinion vectors of agents that can be implemented by the cooper-
ation of all Principals in a beneficial way. The set of all pairs composed of vectors
x 2 S and corresponding cost matrices k is called the domain of compromise in the
distributed control problem of the social network:

K ¼ x 2 <n
þ ; 9 k 2 <nk

þ


HiðxÞ �

X
j2Ni

kij �Wi; i 2 K; ciðy0; xÞ ¼
X
j2Ki

kij; i 2 N

( )
:

ð3:24Þ

By definition the cooperation mode (informational cooperation in social net-
works) takes place if the domain of compromise (3.24) is non-empty: K 6¼ ∅.

The next result can be established by analogy with the criteria of the non-empty
domains of compromise, see [119, 165, 169].

Proposition 3.1 The interests of the control subjects exerting informational
influences on social network members can be coordinated if and only if

max
x

X
i2K

HiðxÞ �
X
j2N

cjðy0; xÞ
" #

�
X
i2K

max
x

HiðxNi ; y
0
�Ni

Þ �
X
j2Ni

ciðy0; xÞ
" #

: ð3:25Þ

Condition (3.25) guarantees the feasibility of interests coordination for control
subjects. If this condition fails, then the competition mode is the case. Assume the
informational influences of all Principals have no “interference” (i.e., an agent will
accept the opinion of the Principal offering the maximal incentive, ignoring the
information from other Principals). Then the Principals’ game has the auction
solution. In a practical interpretation, competition well matches information war-
fare in which the winner is the Principal with the maximal resource (3.21).

Denote
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xi ¼ arg max
x

HiðxNi ; y
0
�Ni

Þ �
X
j2Ni

ciðy0; xÞ
" #

; i 2 K:

Rearrange the Principals in the descending order of the values {Wi}:
W1 � W2 � ��� � Wk. The following fact can be proved for the auction solution
using the same approach as in [169].

Proposition 3.2 If condition (3.25) fails, then the resulting opinion of the social
network members under informational influences is ðxN1 ; y

0
�N1

Þ
Using distributed control models of social networks, we may formulate and

solve higher-level problems, e.g., the division of the spheres of influence: find
which subsets of social network members should be controlled by a certain control
subject. A thorough study of the corresponding cooperative game-theoretic models
seems an interesting topic for further research.

Moreover, within the framework of the current models all agents in social net-
works are passive and unintellectual. So the consideration of agents with complex
internal structure (in the first place, using logical models) that describes their
capability for nontrivial goal implementation, goal-setting, adaptation and reflex-
ion, is also quite promising. For example, the ideal aim is to reach the general
hierarchical architecture of an agent (see Fig. 3.2) that includes the following levels
(in the ascending order of their complexity):

(1) operational level (execution level), which implements behavioral control
algorithms under given particular goals and methods for achieving them;

(2) tactical level, which implements the algorithms of situation identification and
proper behavior choice;

(3) strategic level, which implements decision algorithms for particular goals (the
cooperative allocation of tasks and functions among different agents in a group,
etc.) as well as the algorithms of adaptation, learning, and reflexion4;

(4) conceptual level, which implements goal-setting through choice algorithms for
global goals and methods for achieving them (the mechanisms of functioning).

The first step towards active and intellectual agents can be the separation of their
opinions (awareness) and actions chosen independently based on the opinions
(the relationship between the awareness and actions of agents can be established,
e.g. like in decision problems [80, 165] and/or informational control problems
[168]).

Another topical issue is to explore control problems over multinetworks, with
inhomogeneous controls applied to agents within different networks (e.g., one
network is used to destabilize the current situation in the eyes of agents; the other to

4This level may include four sublevels associated with decision-making, adaptation, learning, and
reflexion.
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report definite information to them; and the third to stimulate their actions).
A complete treatment of reflexion—the design and analysis of phantom networks—
can be fruitful here.

3.2 Informational Epidemic and Protection Against It

In social networks modeling, it is often necessary to consider the opinion spreading
over a social network from active agents to passive ones. Such processes are
studied, e.g., in the diffusion of innovations, see Chap. 1 of the book. In many
applications (e.g., informational safety), the cascades of opinion spreading must be
detected as soon as possible. In this case, two control subjects are identified that
have noncoinciding interests (Attacker and Defender) as well as controlled objects-
(network nodes). For each subject, an object possesses some value. Defender
chooses a scanning period to monitor the states of all nodes in a given network
while Attacker chooses a node for informational attack. This setup naturally leads to
informational confrontation, and it is required to solve the game of the control
subjects (the Principals’ game), i.e., to calculate their equilibrium actions. In
Sect. 3.2, we will formulate the informational confrontation problem in a social
network as well as describe an algorithm for reducing the Defender–Attacker

Operational (execution)
level

Action

Tactical level

Strategic level
(decision-making, 

adaptation, learning, 
reflexion)

Conceptual level
(goal-setting and 

mechanism design)

Ex
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Fig. 3.2 General hierarchical
architecture of an agent

122 3 Models of Informational Confrontation in Social Networks



confrontation to a bimatrix game. As proved below, the Principals’ game always
has a pure strategy Nash equilibrium if the network graph is complete.

Initial data and assumptions. Agents in a social network have connections
defined by a symmetric square matrix G = (gkm)k, m 2 N. If there exists a connection
between agents k and m, then gkm = 1 (a nonzero degree of trust); otherwise,
gkm = 0. Note that gmm = 1 for all m.

In addition to the agents, the model includes two players—A and B. Player
B seeks to “infect” the network, i.e., to spread some information (opinion, etc.) over
it. To this effect, he/she chooses a certain agent to be infected so that the infection
spreads through the whole network. Infection spreading will be modeled using a
simple approach as follows. Assume at each discrete time (step) infection covers
each agent having connection with another agent infected at the previous step.

Here is the formal description of the model. Consider a sequence of steps
s = 0, 1, … . Denote by Ss � N the set of infected agents at step s. Then, at the
next step s + 1, the set of infected agents include those infected earlier and also
those having at least one connection with other infected agents:

Ssþ 1 ¼ m 2 Nj9 k 2 Ss gkm ¼ 1f g: ð3:26Þ

Player A counteracts infection spreading in the following way. He/she performs
the periodic scanning of the whole network and detects the set of all infected agents.
Let the scanning process be instantaneous and perfect in the sense of no errors.
Player A is able to stop further spread of detected infection immediately.

The strategy of player B in this game is the choice of a unique agent j 2 N for
the initial infection of.

The strategy of player A is the choice of the scanning period, i.e., a nonnegative
integer i, which has the following interpretation. For the scanning period i = 1 and
the opponent’s strategy j, only agent j becomes infected. For i = 2, the infected set
includes agent j and also all the agents connected with him/her (i.e., agents
m 2 N such that gmj = 1). Let the strategy set of player A also contain ∞ (“infinite”
scanning period), which indicates of no monitoring.

Under the strategies i and j of players A and B, respectively, all infected agents
form the set Si defined in i steps from the recursive Eq. (3.26) with the initial
condition S1 = {j}. Denote this set by d(i, j).

Also make the following assumption on the decision-making of both players.
Players A and B choose their strategies simultaneously and independently, i.e., a
normal-form game is played.

Let us describe the payoffs of both players under their strategies (i, j).
Within the framework of the current model, suppose

(1) each agent k 2 N possesses some value for both players, ak for player A and bk
for player B;

(2) the monitoring costs of player A with the scanning period i are ci.
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Then the payoffs of players A and B under their strategies (i, j) make up

fij ¼ �
X

k2dði;jÞ
ak � ci; ð3:27Þ

and

hij ¼
X

k2dði;jÞ
bk; ð3:28Þ

respectively.
For making the model complete, we have to accept some hypotheses about the

awareness of both players. Let the structure of the social network (i.e., the com-
munication matrix G) as well as the parameters ak, bk, k 2 N, and ci, i = 0, 1, …, be
the common knowledge [168] of players A and B.

Reduction to bimatrix game. In the previous paragraph, we have rigorously
defined the strategies, awareness and payoffs of players A and B, thereby formal-
izing the model of informational confrontation in a social network. However,
expressions (3.27) and (3.28) can be inconvenient to study particular cases. So we
will design an associated bimatrix game (e.g., see [80]) in which an element (i, j) of
the payoff matrix is a corresponding pair (fij, hij),

The reduction procedure to a bimatrix game employs a well-known property of
the matrix G (e.g., see [97]) as follows. An element (k, j) of the matrix Gi (where
k 6¼ j)5 is nonzero if and only if the distance between the vertexes k and j does not
exceed i. (Recall that the distance between two vertexes is the number of edges in a
minimal path connecting them).

Consider the following sequence of matrices of dimensions n 	 n:

Q1 ¼ E; Qi ¼ u Gi�1� �
; i ¼ 2; 3; . . .; ð3:29Þ

where E denotes an identity matrix while an operator u transforms all nonzero
elements of a matrix into 1. Obviously, all unity elements in column j of the matrix
Qi are exactly in the rows k 2 N for which agent k belongs to the set d(i, j).

Designate as fi and hi the rows i of the payoff matrices of players A and B,
respectively. With the notations a = (a1, …, an), b = (b1, …, bn), and
e = (1, …, 1) (a unit vector of dimension n), for i = 1, 2, … we may write

fi ¼ �aQi � cie;

hi ¼ bQi:

(
ð3:30Þ

Also the payoff bimatrix includes a row corresponding to the strategy i = ∞ (no
monitoring). In this case, the monitoring costs of player A are 0.

5The element (k, k) of the matrix Gi is nonzero for any k and i.
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Thus, the payoffs of both players can be calculated successively, row by row,
using formulas (3.29) and (3.30).

By assumption, the payoff bimatrix has a finite number of rows under the
condition

c1 � c2 � . . . ð3:31Þ

(inequality (3.31) actually means that monitoring costs are a nonincreasing function
of the scanning period). Indeed, the matrix Qi satisfies the identity
Qd+1 = Qd+2 = …, where d is the largest diameter (i.e., the maximal distance
between two vertexes) of the connected components. This leads to the relationships
fdþ 1 
 fdþ 2 
 . . ., see (3.30). Formally speaking, the monitoring strategies
i = d + 1, d + 2, … are surely non-optimal for player A and dominated by the
strategy i = ∞. The practical interpretation is as follows: if the period between two
scans is sufficiently large so that player B infects the whole network (or any con-
nected component of an unconnected network), then the monitoring procedure
becomes non-beneficial to player A.

For calculating d at each step of the algorithm, it is necessary to check the
condition Qi+1 = Qi; if it holds for some index i, then d = i + 1. In this case, the
dimensions of the payoff matrices f and h are (d + 1) 	 n. Assume the last row of
the payoff bimatrix (row (d + 1)) corresponds to the strategy i = ∞ and has the
form

�aQdþ 1; bQdþ 1ð Þ: ð3:32Þ

Example 3.4 A social network consists of three agents, see Fig. 3.3 for the con-
nections and indexes of agents.

The communication matrix of this network is G ¼
1 1 0
1 1 1
0 1 1

0
@

1
A. Let the agents

have the same value for both players, a = b = (4; 1; 5). The monitoring costs of
player A are given by c1 = 3, c2 = 1, and ci = 0.5 for i � 3.

Taking into account (3.32), formulas (3.29) and (3.30) give

Q1 ¼
1 0 0
0 1 0
0 0 1

0
@

1
A; Q2 ¼

1 1 0
1 1 1
0 1 1

0
@

1
A; Qi ¼

1 1 1
1 1 1
1 1 1

0
@

1
A; i� 3; d ¼ 2;

ðf ; hÞ ¼
ð�7; 4Þ ð�4; 1Þ ð�8; 5Þ
ð�6; 5Þ ð�11; 10Þ ð�7; 6Þ

ð�10; 10Þ ð�10; 10Þ ð�10; 10Þ

0
@

1
A: ð3:33Þ

Because d = 2, the values ci for i � 3 make no sense.
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Bimatrix (3.33) fully describes the informational confrontation under study.
Note that the informational confrontation game (3.33) has no pure strategy Nash
equilibrium. •

Networks in form of complete graphs. Consider the model of informational
confrontation in a social network described by a complete graph. (Recall that a
graph is complete if any two vertexes are connected by an edge.)

The next example differs from Example 3.4 in the structural properties of the
social network only.

Example 3.5 A social network consists of three agents, as illustrated in Fig. 3.4.
The communication matrix associated with this network has the form

G ¼
1 1 1
1 1 1
1 1 1

0
@

1
A. The other parameters are the same as in Example 3.4:

a = b = (4; 1; 5), c1 = 3; c2 = 1; ci = 0,5, i � 3.
Using formulas (3.29), (3.30), and (3.32), we find

Q1 ¼
1 0 0

0 1 0

0 0 1

0
B@

1
CA; Qi ¼

1 1 1

1 1 1

1 1 1

0
B@

1
CA; i� 2; d ¼ 1;

ðf ; hÞ ¼ ð�7; 4Þ ð�4; 1Þ ð�8; 5Þ
ð�10 10Þ ð�10; 10Þ ð�10; 10Þ

� �
:

ð3:34Þ

Game (3.34) has precisely one Nash equilibrium in the class of pure strategies:
i = 1, j = 3. In other words, player A chooses the minimal scanning period while
player B chooses agent 3 for initial infection. •

As it turns out, any game of informational confrontation has an equilibrium if the
communication graph of its social network is complete (sufficient condition).

1

2

3

Fig. 3.3 Network in example
3.4

1

2

3

Fig. 3.4 Network in example
3.5
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Proposition 3.3 There exists at least one Nash equilibrium in an arbitrary game of
informational confrontation over a complete communication graph.

Proof of Proposition 3.3. Because d = 1 for a complete graph, then the bimatrix
of this game has dimensions 2 	 n and the second row consists of the identical
elements.

Each bimatrix of this type satisfies one of the following cases.

(1) There exists an index j 2 N such that f2j � f1j. Then the pair (2; j) is a Nash
equilibrium.

(2) For all j 2 N, the inequality f2j < f1j holds. Then a Nash equilibrium is the pair
(1; j), where j 2 Arg maxk2N h1k .

So the game surely has at least one Nash equilibrium. •
Consequently, we have considered the informational confrontation of two

players in a social network. This problem has been reduced to an associated
bimatrix game. For a particular case of the social networks described by complete
graphs, we have proved the existence of at least one Nash equilibrium in this game.
However, will the agents gain some advantage by performing strategic reflexion in
the bimatrix game (or any other associated game)? As is well-known, strategic
reflexion is the process and result of agents’ thinking about the actions chosen by
their opponents. Interestingly, the answer to this question is affirmative!

Strategic reflexion of agents. A key issue of game theory is the models of
proper actions6 of agents in different situations. A stable set of actions in a certain
sense is called a game solution, which emphasizes the importance of such analysis.

Since the agent’s payoff (the value of his/her goal function) depends on the
actions of other agents, the agent’s choice is mostly determined by how he/she
considers (or not) the possible thinking of the opponents in the course of their
decision-making. In other words, the agent’s choice is mostly determined by his/her
strategic reflexion. For example, an agent can make decisions based on his/her own
goal function only, ignoring possible actions of the opponents (the strategic
reflexion of rank 0). If all agents follow this rule, the concept of maximal guar-
anteed result is a natural solution of the game: each agent maximizes his/her
worst-case result under any possible actions of the opponents.

If an agent believes that the opponents have reflexion rank 0, then the rank of
his/her own strategic reflexion is 1. In this case, the agent chooses the best action
(which maximizes his/her goal function), expecting that the opponents will choose
their guaranteeing strategies.

If an agent believes that the opponents have the strategic reflexion of rank 2, then
the rank of his/her own strategic reflexion is 3, and so on. Thus, an agent of
reflexion rank k considers the opponents to be of reflexion rank (k – 1). Choosing
any nonzero finite reflexion rank, an agent believes that the opponents perform

6We consider normal-form games in which the agents choose their actions one-time, simultane-
ously and independently of each other. In more complicated setups (e.g., multistep games), it is
necessary to discriminate between the agent’s action and strategy.
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other strategic reflexion. Choosing the Nash equilibrium, an agent believes that all
participants of the game perform the same strategic reflexion.

Consider a game of two players with finite actions sets. Such games are called
bimatrix, and the goal functions of both players are often defined by matrices
A = (aij) and B = (bij), which form the game matrix (A, B) = (aij, bij).

Denote by I = {1, 2, …, m} the action set of agent 1 and by J = {1, 2, …, n}
the action set of agent 2. Introduce the following assumptions. Let the payoff
matrices be such that each agent has a unique best response to any action of the
opponent:

8 j 2 J : Arg max aij
i2I










 ¼ 1; 8 i 2 I : Arg max bij

j2J












 ¼ 1: ð3:35Þ

Here and in the sequel, Mj j denotes the cardinality of a set M.
Moreover, assume the maximal guaranteed result of each agent is achieved

exactly at one action:

Arg max
i2I

min
j2J

aij










 ¼ Arg max

j2J
min
i2I

bij












 ¼ 1: ð3:36Þ

Conditions (3.35) and (3.36) guarantee a univocal correspondence between the
agent’s reflexion rank and his/her action are presumed valid.

Each agent can choose a finite rank of his/her strategic reflexion, which results in
a corresponding action. Agent 1 of reflexion rank 0 chooses the guaranteeing
strategy—the action i0 ¼ argmaxi2I minj2J aij; of reflexion rank k � 1, the action
ik ¼ argmaxi2I aijk�1

The same formulas apply to agent 2: j0 ¼ argmaxj2J mini2I bij (reflexion rank 0)
and jk ¼ argmaxj2J bik�1j (reflexion rank k � 1).

The following result is the case.

Proposition 3.4 [168]. In bimatrix games, an unbounded growth of the reflexion
rank is a priori irrational, i.e., there exists a reflexion rank such that higher reflexion
ranks yield the same actions of all agents. The maximal rational reflexion rank does
not exceed max {min {n, m + 1}, min {m, n + 1}}.

By Proposition 3.4, the set of admissible actions on the choice of reflexion ranks
is finite. So we may pass from the original game to the game of ranks in which the
agent’s strategy is to choose the rank of his/her strategic reflexion (see Table 3.1).

Table 3.1 Reflexion ranks
and actions of agents

Rank k 0 1 … R

The action of agent 1 i0 i1 … iR
The action of agent 2 j0 j1 … jR
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The upper estimate for the number of possible pairwise distinguishable strategies
makes up R ¼ Ij j 	 Jj j ¼ m	 n. Then the original bimatrix game can be trans-
formed into a bimatrix game of dimensions R 	 R.

Obviously, some rows and columns in the new matrix possibly coincide with
each other (i.e., the choice of different ranks by agents leads to the same action in
the original game). Identifying such rows and columns, we obtain the matrix of the
new game, further called the choice game for the rank of strategic reflexion (or
simply the game of ranks).

Because ik 2 I and jk 2 J, all actions of the agents in the game of ranks cor-
respond to their actions in the original game. Hence, we have the following fact.

Proposition 3.5 In the game of ranks, the payoff matrix is a submatrix of the
matrix of the original bimatrix game.

Proposition 3.2 suggests that the transition to the game of ranks possibly
eliminates some equilibria (i.e., they will disappear in the new matrix).

Example 3.6 Consider a bimatrix game given by

ð2; 3Þ ð0; 0Þ ð3; 2Þ
ð0; 0Þ ð4; 4Þ ð0; 1Þ
ð3; 2Þ ð1; 0Þ ð2; 3Þ

0
@

1
A:

To construct the matrix of the game of ranks, analyze the choice of agents under
different reflexion ranks (see Table 3.2).

Therefore, this matrix takes the form

ð2; 3Þ ð3; 2Þ
ð3; 2Þ ð2; 3Þ

� �
:

Clearly, the equilibrium pair of payoffs (4, 4) has been lost after the transition to
the game of ranks. •

Hence, the question is: Will transition to the game of ranks yield new equilibria?
Actually, no.

Proposition 3.6a For an arbitrary bimatrix game, the transition to the game of
ranks yields no new equilibria.

Proof of Proposition 3.6a. As before, let I be the action set of agent 1 and J the
action set of agent 2. Denote by I 0�I and J 0�J the action sets of these agents in the
game of ranks.

Consider a pair of actions (iu, jv), iu 2 I′, jv 2 J′, which is the equilibrium in the
game of ranks.

Table 3.2 Reflexion ranks
and actions of agents in
example 3.6

Rank k 0 1 2 …

The action of agent 1 3 1 3 …

The action of agent 2 3 1 3 …
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First, demonstrate that jv is the best response of agent 2 to the action iu of agent 1
in the original game. Indeed, the best response over the set J also belongs to J′ by
the design procedure of the game of ranks. Thus, the best response over the set J′
coincides with that over the set J. By the definition of equilibrium7, the best
response on the set J′ is jv.

By analogy, iu is the best response of player 1 to the strategy jv of player 2 in the
original game. Therefore, the pair of actions (iu, jv) forms an equilibrium in the
original game.

Because the choice of the equilibrium pair is assumed to be arbitrary, any
equilibrium in the game of ranks becomes an equilibrium in the original game (i.e.,
new equilibria do not appear). •

So the transition to the game of ranks does not produce new equilibria
(Proposition 3.6a). Moreover, the existing equilibria may even disappear (Example
3.6). The number of equilibria in the game of ranks satisfies the following estimate
that relies on (3.35) and (3.36).

Proposition 3.6b Under conditions (3.35) and (3.36), the game of ranks has at
most two equilibria.

Proof of Proposition 3.6b Assume the game of ranks has three different equi-
libria: (iu, jv), (iu′, jv′), and (iu″, jv″). By Proposition 3.3, they are equilibria in the
original game. Then, on the strength of (3.35), iu 6¼ iu′ 6¼ iu″. Without loss of
generality, let u = max [u; u′; u″]. In an equilibrium, the action of an agent gives
the best response to the opponent’s action and hence iu = iv+1 = iu+2 = iv+3-
= iu+4 = …; jv = ju+1 = jv+2 = … . Similar equalities hold for iu′ and iu″.
Consequently, iu+1 = iu′ and iu = iu″. On the other hand, this implies iu = iu″, which
contradicts the conditions above. The proof of Proposition 3.6b is complete. •

Interestingly, sometimes any outcome of the agents’ game leads to a better result
than an equilibrium, as illustrated below.

Example 3.7 Consider the bimatrix game defined by

ð6; 10Þ ð0; 0Þ ð10; 6Þ
ð0; 0Þ ð5; 5Þ ð0; 1Þ
ð10; 6Þ ð1; 0Þ ð6; 10Þ

0
@

1
A:

Here the equilibrium leads to the pair of payoffs (5, 5). Obviously, this is worse
than any outcome in the game of ranks (for both agents):

ð6; 10Þ ð10; 6Þ
ð10; 6Þ ð6; 10Þ

� �
: �

Future investigations can be focused on the games of ranks “superstructed” over
bimatrix games without pure strategy Nash equilibria.

7Recall that the matter concerns Nash equilibria.
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3.3 Informational Confrontation in Mob Control

This section considers the problematique of informational confrontation, mostly on
the example of mobs as active network structures. First, we describe a mob model
using the results of the paper [27] and also informational confrontation within the
stochastic models of mob control on the basis of [29]. Next, we present original
analysis results for the game-theoretic models of informational confrontation in
terms of normal-form games (including a characterization of Nash equilibria and
equilibria in secure strategies), hierarchical games and reflexive games, see [163].
Numerous examples illustrate how these equilibria depend on the model parameters
in analytic form.

Mob model
Denote by N = {1, …, n} a finite set of agents. Agent i 2 N in a mob is charac-
terized by his/her decision xi 2 {0; 1} (being active or passive) and threshold
hi 2 [0, 1] that defines the agent’s choice under a given opponents’ action profile
(the vector x–i comprising the decisions of the other agents). In other words, agent
i chooses his/her action as the best response (BR) to the existing opponents’ action
profile:

xi ¼ BRi x�ið Þ ¼
1 if 1

n�1

P
j6¼i

xj � hi;

0 if 1
n�1

P
j6¼i

xj\hi:

8><
>: ð3:37Þ

The behavior described by (3.37) is called threshold behavior, see the pioneering
paper [87] and also the surveys in [34, 147].

Consider the following dynamic model of collective behavior [27]. At the initial
(zero) step, all agents are passive. At each subsequent step, the agents act simul-
taneously and independently according to the procedure (3.37). Introduce the
notation Q0 = Ø,

Q1 ¼ i 2 Njhi ¼ 0f g;Qk ¼ Qk�1 [ i 2 Nj#Qk�1 � n hif g; k ¼ 2; . . .; n� 1;

ð3:38Þ

where # means set cardinality, Qk is the set of active agents at step k. Obviously,
Q0�Q1�. . .�Qn�N. For the agents’ threshold vector h = (h1, h2, …, hn), calcu-
late the index qðhÞ ¼ min k ¼ 0; n� 1



Qkþ 1 ¼ Qk
� �

. Define a collective behavior
equilibrium (CBE) [27] by

x�i ðhÞ ¼
1 if i 2 QqðhÞ;
0 if i 2 NnQqðhÞ;

�
i 2 N:
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The value x� ¼ #QqðhÞ
n ¼ 1

n

P
i2N x�i ðhÞ 2 ½0; 1� reflects the “mob state,” i.e., the

share of active agents in the CBE. As established in [24, 27], the CBE is a Nash
equilibrium in the agents’ game with the best response (3.37).

Suppose the number of agents is large. Denote by F(�): [0, 1] ! [0, 1] the
distribution function of the agents’ thresholds, a nondecreasing function defined on
the unit segment (the set of all admissible thresholds) that is left-continuous and
possesses the right-hand limit at each point of its definitional domain.

Assume we know the share xk of active agents at step k, where k = 0, 1, …
Further behavior of the agents satisfies the following recurrent expression [24, 87]:

xlþ 1 ¼ F xl
� �

; ð3:39Þ

where l = k, k + 1, … are subsequent steps.
The equilibria of the discrete dynamic system (3.39) are determined by the initial

point x0 (on default, x0 = 0) and also by the intersection points of the curve F(�) and
the bisecting line of quadrant I:

FðxÞ ¼ x: ð3:40Þ

Interestingly, the trivial equilibrium is 1 by the properties of a distribution
function.

The potentially stable equilibria of system (3.39) are the points at which the
curve F(�) crosses the bisecting line by approaching it “from left and top.”
Designate as y ¼ inf x : x 2 0; 1ð �;FðxÞ ¼ xf g the least nonzero root of Eq. (3.40).

In accordance with (3.38) and (3.39), the collective behavior equilibrium [93] is
the point

x� ¼ y if 8z 2 0; y½ �FðzÞ� z;
0 otherwise:

�
ð3:41Þ

Model of informational confrontation
Consider a mob as an object controlled by two subjects (Principals). The behavior
of the dynamic system (3.39) that describes the evolution of the share of active
agents is determined by the distribution function F(�) of the agents’ thresholds. So
we will analyze the control actions that change this distribution function.

Note that the paper [27] defined the set (share) of the initially excited agents or/
and the distribution function of their thresholds that implement a required equi-
librium. Within the models studied below, the agents are excited “independently,”
as illustrated by formula (3.38).

The following models of control applied by the Principals to the distribution
function of the agents’ thresholds were proposed in [29].

Model I. Suppose a control action nullifies the threshold of each agent inde-
pendently from the other agents with a same probability a 2 [0, 1] for all the agents.
In accordance with (3.37), the agents having zero thresholds choose unit actions
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regardless of the actions of the other agents. Hence, the parameter a is interpreted as
the share of the initially excited agents (provokers) [29].

Now, assume a control action makes the threshold of each agent equal to 1
independently from the other agents with a same probability b 2 [0, 1] for all
agents. In accordance with (3.37), the agents having unit thresholds are passive, and
the parameter b gives the share of the initially “immunized” agents [29].

The paper [29] also examined the case of informational confrontation in the
following setup. There are Principal 1 “exciting” a share a 2 [0, 1] of agents and
Principal 2 “immunizing” a share b 2 [0, 1] of agents (alternatively, each agent can
be independently excited or/and immunized with a corresponding probability by the
other Principal). For the sake of definiteness, the threshold of any agent that is
excited and immunized simultaneously remains the same. Other setups are also
possible, which would yield different results. Under the assumption about “in-
finitely” many agents, it was demonstrated in [29] that the distribution function of
the agents’ thresholds has the form

Fa;bðxÞ ¼
að1� bÞþ ð1� a� bþ 2abÞFðxÞ; x 2 ½0; 1Þ;
1; x ¼ 1:

(
ð3:42Þ

Denote by x*(a, b) the CBE (3.41) corresponding to the distribution function
(3.42) and by ya;b ¼ inf x : x 2 0; 1ð �; Fa;bðxÞ ¼ x

� �
the least nonzero root of the

equation Fa,b(x) = x. Then

x�ða; bÞ ¼ ya;b if 8z 2 0; ya;b

 �

: Fa;bðzÞ� z;
0 otherwise:

�
ð3:43Þ

Using expressions (3.40) and (3.42), we find the control pairs (a, b) imple-
menting the given CBE (3.43).

Designate as

XðxÞ ¼ ða; bÞ 2 ½0; 1�2

x�ða; bÞ ¼ x
n o

the set of the control pairs implementing a given value x 2 [0, 1] as the CBE.
Let W ¼ S

ða;bÞ2½0;1�2 x
�ða; bÞ be the set of attainable equilibria. The

game-theoretic analysis below relies on another important result of [29] as follows:
the CBE x*(a, b) is monotonically (nonstrictly) increasing in a and monotonically
(nonstrictly) decreasing in b; for strict monotonicity, a sufficient condition is
defined by

Fð0Þ[ 0; Fð1� 0Þ\1: ð3:44Þ

The paper [29] also obtained sufficient conditions, in terms of the properties of
the distribution function, under which a given point x 2 [0, 1] is implemented as
the CBE using certain control actions (a, b) 2 [0, 1]2.
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Model II. Now, consider informational confrontation: Principal 1 adds k pro-
vokers with zero thresholds while Principal 2 adds l immunizers with unit
thresholds to the set N. For a sufficiently large n, we will employ the continuous
approximation d = k / n, c = l / n, assuming that d; c 2 R

1
þ .

In this case [29], the distribution function of the agents’ thresholds has the form

Fd; cðxÞ ¼
dþFðxÞ
1þ dþ c

; x 2 ½0; 1Þ;
1; x ¼ 1:

8<
: ð3:45Þ

Denote by x*(d, c) the CBE (3.41) corresponding to the distribution function
(3.45). Let yd; c ¼ inf x : x 2 0; 1ð �; Fd;cðxÞ ¼ x

� �
be the least nonzero root of the

equation Fd,c(x) = x. Then

x�ðd; cÞ ¼ yd;c if 8z 2 0; yd;c

 �

: Fd;cðzÞ� z;
0 otherwise:

�
ð3:46Þ

For Model II, it was established in [29] thatW = (0, 1] and, moreover,W = [0, 1]
if F(0) = 0. Designate as

Kðx) ¼ ðd; cÞ 2 R
2
þ


x�ðd; cÞ ¼ x

� �
the set of all control pairs implementing a given value x 2 [0, 1] as the CBE.

To explore the game-theoretic models of interaction between the Principals, we
will need a result that is proved similarly to Assertions 3 and 4 in the paper [29].

Proposition 3.7 For Model II, the CBE x*(d, c) has the following properties:

(1) monotonic (nonstrict) increase in d; for strict monotonicity, a sufficient con-
dition is F(1 − 0) < 1 or c > 0;

(2) monotonic (nonstrict) decrease in c; for strict monotonicity, a sufficient con-
dition is F(0) > 0 or d > 0.

Example 3.8 Consider the uniform distribution of the agents’ thresholds,
i.e., F(x) = x. Here x*(d, c) = d / (d + c) and KðxÞ ¼ ðd; cÞ 2 R

2
þ


c=d ¼�

1=x� 1ð Þg. •
As a digression, note an important feature of the socioeconomic and organiza-

tional systems with several subjects who are interested in certain states of a con-
trolled system (e.g., a network of interacting agents) and applying control actions to
it (the systems with distributed control [78, 165, 169]). In such systems, like in the
current setup, there exists an interaction between the subjects, which is termed
informational confrontation if they have informational influence on the controlled
object (see the surveys in the current section and in [160] as well as Sect. 3.1).

These situations are often described by a normal-form game of the Principals;
the strategies chosen by the latter define the parameters of the agents’ game [165].
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For example, consider the models of informational confrontation in social networks
(see the preceding sections of this chapter and also [93]). As mentioned in [158],
more complicated situations are also possible in which the control actions have no
“symmetry.” In the “attack/defense” situation, Principal 1 influences the initial
states of the agents whereas Principal 2 modifies the structure of the relations
among them or/and their thresholds (the latter acts simultaneously with the oppo-
nent or right after him/her, being aware of his/her choice). Such situations can be
characterized in terms of hierarchical games.

In what follows, we will consider a series of game-theoretic models of inter-
action between the Principals whose informational influences on a mob are defined
by expressions (3.42) and (3.43) (Model I) or expressions (3.45) and (3.46) (Model
II).

Normal-form game of Principals
Model I. Two Principals apply an informational influence on a mob by playing a
normal-form game. That is, Principal 1 and Principal 2 choose their strategies a 2
[0, 1] and b 2 [0, 1], respectively, one-time, simultaneously and independently of
each other. The goal functions of Principals 1 and 2 have the form

faða; bÞ ¼ Haðx�ða; bÞÞ � caðaÞ; ð3:47Þ

fbða; bÞ ¼ Hbðx�ða; bÞÞ � cbðbÞ: ð3:48Þ

Moreover, the payoff Ha(�) of Principal 1 is an increasing function as he/she
seeks for maximizing the number of the excited agents; the payoff Hb(�) of Principal
2 is a decreasing function because his/her interests are quite the opposite. Both cost
functions, ca(�) and cb(�), are strictly increasing and ca(0) = cb(0) = 0.

The described game belongs to the class of normal-form ones, and several
typical questions of game theory [80, 153] arise immediately. What is the Nash
equilibrium (a*, b*) in the agents’ game? For which strategy profiles is the Nash
equilibrium dominating the status quo profile, i.e., the CBE without control (i.e.,
when do the conditions fa(a

*, b*) � fa(0, 0) and fb(a
*, b*) � fb(0, 0)) hold?

What is the structure of the set of Pareto efficient strategy profiles? When does a
dominant strategy equilibrium (DSE) exist? And so on.

Denote by f(a, b) = fa(a, b) + fb(a, b) the utilitarian collective utility function

(CUF) [151]. The pair of strategies ðâ; b̂Þ ¼ argmaxða;bÞ2½0;1�2 f ða; bÞ will be called
the utilitarian solution.

The results obtained in the paper [29] and Proposition 3.7 are crucial for
game-theoretic analysis, as explained below. The goal functions (3.47) and (3.48)
of the Principals depend on their strategies (a and b or d and c) and on the CBE,
which is in turn dependent on these strategies. The monotonic dependence of the
CBE on the strategies of the Principals (if necessary, its continuity can be checked
in a specific case), as well as the implementability of the whole unit segment as the
CBE via the appropriately chosen strategies, allow “translating” the properties of
the goal and cost functions on the dependence of these parameters directly from the
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strategies of the Principals. For example, if Hd(x
*(d, c)) is an increasing function of

x*, then by Proposition 3.7 the payoff of Principal 1 is an increasing function of his/
her strategy, and so on.

An elementary case is the antagonistic game: Principal 1 seeks for maximizing
the number of excited agents while Principal 2 has the opposite interests. For
ca(�) � 0 and cb(�) � 0 (no control costs), expressions (3.47) and (3.48) yield

f̂aða; bÞ ¼ x�ða; bÞ; f̂bða; bÞ ¼ 1� x�ða; bÞ: ð3:49Þ

Clearly, f(a, b) � 1. As x*(a, b) does not decrease in a and increase in b, we
naturally arrive at Proposition 3.8. Like its “analogs” for Model II (see Propositions
3.10 and 3.11 below), this proposition seems trivial in some sense, following
directly from the monotonicity of the goal functions of agents in their actions. On
the other hand, Proposition 3.8 proves the existence of the DSE and gives a method
to calculate it in the degenerate cases.

Proposition 3.8 For Model I described by the antagonistic game with zero control
costs, there exists the DSE aDSE = 1, bDSE = 1.

Note that, in this equilibrium, the distribution function of the agents’ thresholds
coincides with the initial distribution function, i.e., F1,1(x) � F(x). Hence, the CBE
remains invariable, “matching” the status quo profile.

Example 3.9 Choose F(x) = x; then

xI
� ða; bÞ ¼ að1� bÞ

aþ b� 2ab
: ð3:50Þ

Calculate the partial derivatives

@xI
� ða; bÞ
@a

¼ bð1� bÞ
ðaþ b� 2abÞ2 ;

@xI
� ða; bÞ
@b

¼ � að1� aÞ
ðaþ b� 2abÞ2 ;

which shows that xI*(a, b) is increasing in the first argument and decreasing in the
second argument for any admissible values of the other argument. Therefore, under
zero control costs, the DSE in the Principals’ game with the goal functions (3.49) is
the unit strategies aDSE = 1, bDSE = 1. Naturally, this point also represents the Nash
equilibrium (NE) in the Principals’ game. In the current example, we have
W = [0, 1]. The DSE implements the same mob state as in the absence of control. •

Now, consider the case of nonzero control costs.

Proposition 3.9 For Model I with W = [0, 1] and condition (3.44), let x*(a, b) be a
continuous function, the payoff functions of the Principals be bounded, linear or
concave in their strategies and the cost functions be convex. Then there exists a
Nash equilibrium in the Principals’ game.
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The trivial Proposition 3.9 (and its “analog” for Model II—Proposition 3.12)
directly follows from the sufficient conditions of Nash equilibrium existence in the
continuous games, see [80, 153].

The example below has a unique Nash equilibrium.

Example 3.10 Choose F(x) = x, Ha(x) = x, Hb(x) = 1 – x, ca(a) = – ln(1 – a), and
cb(b) = – k ln(1 – b). The first-order optimality conditions yield b = (1/k) a. For
k = 1, we obtain a* = 1/4, b* = 1/4. In this case,

xI
�
a�; b�ð Þ ¼ 1=2; fa a�; b�ð Þ ¼ fb a�; b�ð Þ 
 �0:2:

Interestingly, in the equilibrium both Principals have smaller values of their goal
functions than in the status quo profile (0; 0) because fa(0, 0) = 1 and fb(0, 0) = 0.
Here the utilitarian solution is also the zero strategy profile. •

Model II. Consider the goal functions of Principals 1 and 2 of form (3.47) and
(3.48), respectively, except that a is replaced by d and b by c.

Proposition 3.10 For Model II described by the antagonistic game with zero
control costs, there exist no finite DSE or NE in the Principals’ game.

This proposition is immediate from the boundedness of the admissible strategy
sets of the Principals and from the monotonicity of x*(d, c) in both variables (see
Proposition 3.7). In addition, these properties guarantee the following result.

Proposition 3.11 For Model II described by the antagonistic game with zero
control costs, let the admissible strategy sets of the Principals be bounded: d 

max, c 
 cmax. Then there exists the DSE dDSE = dmax, cDSE = cmax in the
Principals’ game.

Consider the case of nonzero control costs.

Proposition 3.12 For Model II under the hypotheses of Proposition 3.7, let
x*(d, c) be a continuous function, the payoff functions of the Principals be bounded,
linear or concave in their strategies and also the cost functions be convex with the
zero derivatives at the zero point and infinite growth as the argument tends to
infinity. Then there exists a finite Nash equilibrium in the Principals’ game.

The proof of Proposition 3.12 is straightforward. Under the above hypotheses,
the goal functions of the Principals are concave in their strategies and take non-
negative values on the bounded value set of the arguments. So a Nash equilibrium
exists in this continuous game by the sufficient conditions [80].

Example 3.11 Choose F(x) = x, Hd(x) = x, Hc(x) = 1 – x, cd(d) = d2, and
cc(c) = k2 c2. In accordance with Example 3.8, the CBE is x*(d, c) = d / (d + c).
The goal functions of the Principals have the form

fdðd; cÞ ¼ d=ðdþ cÞ � d2; ð3:51Þ

fcðd; cÞ ¼ 1� d=ðdþ cÞ � k2c2: ð3:52Þ
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The goal functions (3.51) and (3.52) are concave in d and c, respectively. The
first-order optimality conditions yield the Nash equilibrium

d� ¼
ffiffiffi
k
2

r
1

1þ k
; c� ¼ 1ffiffiffiffiffiffi

2k
p 1

1þ k
:

In this case, the CBE is x� d�; c�ð Þ ¼ k
1þk ; and in the NE the goal functions take

the values fd d�; c�ð Þ ¼ kð1þ 2kÞ
2ð1þ kÞ2 ; fc d�; c�ð Þ ¼ kþ 2

2ð1þkÞ2 :

The utilitarian CUF f(d, c) = fd(d, c) + fc(d, c) achieves maximum (actually, 1)
in the zero strategy profile. The value of this function in the NE is f d�; c�ð Þ ¼
1� k

ð1þ kÞ2 : So, the term k
ð1þ kÞ2 characterizes how “worse” the NE value of the

utilitarian CUF is in comparison with its optimal value. •

Threshold goal functions of Principals
For practical interpretations, an important case concerns the threshold payoff
functions of the Principals, i.e.,

HaðbÞðxÞ ¼
H þ

aðbÞ if x�ð
 Þ haðhbÞ;
H�

aðbÞ otherwise,

�
ð3:53Þ

where H þ
aðbÞ [H�

aðbÞ. That is, Principal 1 obtains a higher payoff if the share of

active agents is not smaller than a threshold ha 2 [0, 1]; Principal 2 obtains a higher
payoff if the share of active agents does not exceed a threshold hb 2 [0, 1]. Denote
by x̂ the CBE in the absence of the Principals’ control actions: x̂ ¼ x�ð0; 0Þ. We will
need a pair of hypotheses as follows.

Assumption A.1 The attainability set W is the unit segment, x*(a, b) is a strictly
monotonic continuous function of its arguments, and the cost functions of the
Principals are strictly monotonic.

See the corresponding sufficient conditions above or check these conditions in
each specific case.

Assumption A.2 Under the zero strategy of Principal 2, Principal 1 can inde-
pendently implement any CBE from x̂; 1½ �; under the zero strategy of Principal 1,
Principal 2 can independently implement any CBE from 0; x̂½ �. ♦

The structure of the goal functions of the Principals, together with Assumptions
A.1 and A.2, directly imply the following. For Principal 1 (Principal 2), it is
nonbeneficial to implement any CBE exceeding the threshold ha (any CBE strictly
smaller than the threshold hb, respectively).

Model I. Define the Nash equilibrium (a*; b*):

8a 2 ½0; 1� : Haðx�ða�; b�ÞÞ � caða�Þ�Haðx�ða; b�ÞÞ � caðaÞ;
8b 2 ½0; 1� : Hbðx�ða�; b�ÞÞ � cbðb�Þ�Hbðx�ða�; bÞÞ � cbðbÞ:

�
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First, consider the special case hb = ha = h.
Introduce the notations aðhÞ ¼ min a 2 ½0; 1�j x�ða; 0Þ ¼ hf g and bðhÞ ¼

min b 2 ½0; 1�j x�ð0; bÞ ¼ hf g.
Define the set

Xa; bðhÞ ¼ ða; bÞ 2 ½0; 1�2

n
x�ða; bÞ ¼ h; ð3:54Þ

caðaÞ
H þ
a � H�

a ; cbðbÞ
H þ
b � H�

b

o
;

which includes the pairs of strategies implementing the CBE h with the following
property: each Principal gains not less than by using the strategy that modifies his/
her payoff (3.53). By analogy with [165, 169], set (3.54) will be called the domain
of compromise.

By definition, if the domain of compromise is nonempty, then by implementing
the CBE h with the utilitarian CUF the agents guarantee a payoff that is not smaller
than in the status quo profile x̂. Moreover, the Principals obviously benefit nothing
by implementing any other CBE (perhaps, except x̂ or h).

Proposition 3.13 If hb = ha = h and Assumption A.1 holds, then there may exist
NE of the two types only as follows:

(1) (0; 0) is the NE under the conditions

x̂
 h and caðaðhÞÞ�H þ
a � H�

a ð3:55Þ

or

x̂� h and cbðbðhÞÞ�H þ
b � H�

b ; ð3:56Þ

(2) the set of NE includes the nonempty set Xa,b(h) if any.
Furthermore, if Assumption A.2 holds, then
(a(h); 0) is the NE under the conditions

x̂
 h and caðaðhÞÞ
H þ
a � H�

a ; ð3:57Þ

(0; b(h)) is the NE under the conditions

x̂� h and cbðbðhÞÞ
H þ
b � H�

b : ð3:58Þ

Now, we will explore a relationship between the domain of compromise and the
utilitarian solution. Denote by
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CðhÞ ¼ min
ða;bÞ2Xa;bðhÞ

caðaÞþ cbðbÞ

 � ð3:59Þ

the minimum total cost of the Principals to implement the CBE h. In the case under
consideration, the utilitarian solution satisfies the following conditions:

– if x̂
 h, then f ðâ; b̂Þ ¼ max H�
a þH þ

b

n
; H þ

a þH þ
b � CðhÞ

i
;

– if x̂� h, then f ðâ; b̂Þ ¼ max H þ
a þH�

b

n
; H þ

a þH þ
b � CðhÞ

i
.

So, if for x̂
 h we have CðhÞ
H þ
a � H�

a while for x̂� h CðhÞ
H þ
b � H�

b ,
then the domain of compromise includes the utilitarian solution.

The example below demonstrates a crucial role of Assumption A.2 for the NE
structure.

Example 3.12 Choose F(x) = x, h = 1/2, H�
a ¼ H�

b ¼ 0, H þ
a ¼ H þ

b ¼ 1, ca(a) =
– ln(1 – a), and cb(b) = – ln(1 – b). Clearly, see Example 3.10, the zero strategy
profile is not an NE. In accordance with the results of Example 3.9 and expressions
(3.54)–(3.59):

Xa;bð1=2Þ ¼ ða; bÞ 2 ½0; 1�2

 að1� bÞ
aþ b� 2ab

¼ 1=2; lnð1� aÞ� � 1; lnð1� bÞ� � 1
� �

;

i.e., Xa;bð1=2Þ ¼ ða; bÞ 2 ½0; 1�2

a ¼ b; 0\a; b
 1� 1=e
n o

. In this example,

the e-optimal utilitarian solution is the Principals’ strategy profile (e, e), where
e 2 (0, 1 − 1/e]. •

Next, consider the general case in which the Principals’ thresholds appearing in
the payoff functions (3.53) are different. In terms of applications (informational
confrontation), the most important relationship between the thresholds is described
by

hb\x̂\ha: ð3:60Þ

Define the following functions:

Caðx; bÞ ¼ min
a2½0;1�jx�ða;bÞ¼xf g

caðaÞ; Cbðx; aÞ ¼ min
b2½0;1�jx�ða;bÞ¼xf g

cbðbÞ:

(Whenever minimization runs on the empty set, a corresponding function will be
supposed + ∞.)

Since the cost functions are nondecreasing and the payoff functions have form
(3.53), the Principals do not benefit by implementing the CBE from the interval
(hb; ha) in comparison to the status quo profile x̂. Introduce another hypothesis that
actually relaxes Assumption A.2.
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Assumption A.3 Under the zero strategy of Principal 2, Principal 1 can inde-
pendently implement the CBE ha; under the zero strategy of Principal 1, Principal 2
can independently implement the CBE hb. ♦

The result below is immediate from the definition of Nash equilibrium and the
properties of the Principals’ goal functions.

Proposition 3.14 Under Assumptions A.1, A.3 and condition (3.60), the Nash
equilibria in the Principals’ game have the following characterization:

– (0; 0) is the NE if

H þ
a � caðaðhaÞÞ
H�

a ;
H þ

b � cbðbðhbÞÞ
H�
b ;

�
ð3:61Þ

– (a(ha); 0) is the NE if

H þ
a � caðaðhaÞÞ�H�

a ;
H�

b �H þ
b � Cbðhb; aðhaÞÞ;

�
ð3:62Þ

– (0; b(hb)) is the NE if

H þ
b � cbðbðhbÞÞ�H�

b ;

H�
a �H þ

a � Caðha; bðhbÞÞ:
�

ð3:63Þ

Model II with the threshold payoff functions of the Principals is designed by
analogy to Model I: it suffices to replace a by d, and b by c. The next examples are
illustrating Proposition 3.14 for Model II.

Example 3.13 Choose F(x) = 1/3 + 2x2/3, hc = 0.4, hd = 0.6, H�
d ¼ H�

c ¼ 0,
H þ

d ¼ H þ
c ¼ 1, cd(d) = d2, and cc(c) = k2 c2.

Here we easily calculate x̂ ¼ 1=2, c(hc) 
 0.1, and d(hd) 
 0.07.
For k = 2, conditions (3.61)–(3.63) all fail and hence the NE does not exist.
For k = 20, conditions (3.61) and (3.63) fail but condition (3.62) holds.

Therefore, (0.07; 0) is the NE. •

Example 3.14 For the data of Example 3.13, choose hc = hd = h = 0.4 and k = 20.
In this case,

Xd;cð0; 4Þ ¼ d 2 ½0; 1�; c 2 ½0; 0:05�jc ¼ 0:1þ 1:5 df g ¼ ;:

Condition (3.56) is true, i.e., the trivial profile (0; 0) gives the NE. •
If there exist no Nash equilibria, an alternative approach is to find and analyze

the equilibria in secure strategies (ESSs). This concept was originally suggested in
the paper [109] as the equilibria in safe strategies and then restated in a simpler form
(see [110, 111] for details). The ESS proceeds from the notion of a threat. There is a
threat to a player if another player can increase his/her payoff and simultaneously
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decrease the payoff of the given player via a unilateral deviation. An equilibrium in
secure strategies is defined as a strategy profile with the following properties:

– all the players have no threats;
– none of the players can increase his/her payoff by a unilateral deviation without

creating a threat to lose more than he/she gains.

Under Assumptions A.1 and A.2, define the following functions:

Cdðx; cÞ ¼ min
d� 0jx�ðd;cÞ¼xf g

cdðdÞ; Ccðx; dÞ ¼ min
c� 0jx�ðd;cÞ¼xf g

ccðcÞ:

Again, if minimization runs on the empty set, a corresponding function will be
supposed + ∞.

Using the definition of ESS (see above and also the papers [109, 110]) together
with the properties of the Principals’ goal functions, we establish the following
result.

Proposition 3.15 Let Assumptions A.1 and A.2 hold for Model II. Then

(1) the equilibrium point (dESS; 0) is the ESS if there exists a minimum nonnegative
value dESS such that

x�ðdESS; 0Þ� hd;
H þ

d � cdðdESSÞ�H�
d ;

H þ
c � Ccðhc; dESSÞ
H�

c ;

8<
:

(2) the equilibrium point (0; cESS) is the ESS if there exists a minimum nonnegative
value cESS such that

x�ð0; cESSÞ
 hc;
H þ

c � ccðcESSÞ�H�
c ;

H þ
d � Cdðhd; cESSÞ
H�

d :

8<
:

Example 3.15 For the data of Example 3.13, choose k = 2, which yields no Nash
equilibria in the game. From the first system of inequalities in Proposition 3.15 we
find that dESS 
 0.816 implements the unit CBE. The second system of inequalities
in Proposition 3.15 is infeasible, i.e., this ESS is unique. •

At the end of this paragraph dedicated to threshold goal functions, note that the
choice of thresholds in the payoff functions of Principals and the payoffs themselves
can be treated as meta control. Really, with a known relationship between the
equilibrium of the Principals’ game and these parameters, it is possible to analyze
three-level models (meta level–Principals–agents), i.e., to choose the admissible
values of the parameters in the Principals’ game that lead to an equilibrium
implementing the desired CBE in the agents’ game. We give an illustrative example
below.
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Example 3.16 For the data of Example 3.13, choose k = 20 and consider the
following problem. It is required to choose values H þ

d and H þ
c , for which the zero

strategy profile becomes the NE in the Principals’ game. By condition (3.61) it
suffices to decrease H þ

d to 4.9 	 10−4.
For the data of Example 3.13 and k = 20, the next problem is to choose values

H þ
d and H þ

c that implement the CBE hc = 0.4. In accordance with expression
(3.63), it suffices to choose H þ

d 
 0:029 and H þ
c � 4. •

In addition to the standard normal-form games, we will study their extensions,
namely, hierarchical and reflexive games between two Principals. As a matter of
fact, the forthcoming paragraphs merely demonstrate how the corresponding classes
of the game-theoretic models of informational confrontation can be described and
analyzed. Their systematic treatment is the subject of further research.

Hierarchical game of Principals
In mob control problems, the players (Principals) often make decisions sequentially.
Here the essential factors are the awareness of each player at the time of
decision-making and the admissible strategy sets of the players (for a classification
and research of hierarchical games, we refer to the classical monograph [80]).
A certain hierarchical game can be “superstructed” over each normal-form game
[158, 160, 165]. Moreover, it is necessary to discriminate between two setups as
follows:

(1) One of the Principals chooses his/her strategy and then the other does so, being
aware of the opponent’s choice. After that, an informational influence is applied
on the agents. As a result, the distribution function of the agents’ thresholds
takes form (3.42) or (3.45). We will study this case below.

(2) One of the Principals chooses his/her strategy and applies his/her informational
influence on the agents. After that, the other Principal chooses his/her strategy
and applies his/her informational influence on the agents, being aware of the
opponent’s choice.

For Model I, both setups are equivalent as they yield the same distribution
function (3.42) of the agents’ thresholds. However, they differ within the frame-
work of Model II.

In the games Г1 [71] (including the Stackelberg games [80, 153]), the admissible
strategy sets of the Principals are the same as in the original normal-form game, and
the Principal making the second move knows the choice of the opponent moving
first. The corresponding situations can be interpreted as control and countercontrol
(e.g., under a given value of a, choose b, or vice versa). If the original normal-form
game can be easily analyzed with an explicit relationship between the equilibria and
model parameters, then the corresponding game Г1 is often examined without major
difficulties.

Consider several examples of hierarchical games for the first setup of Model I
with the threshold payoff functions of Principals.
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Example 3.17 For the data of Example 3.12 and h = 1/3, Principal 1 chooses the
parameter a and then Principal 2 chooses the parameter b, being aware of the
opponent’s choice (the so-called game Г1(a, b)). It follows from expressions (3.50)
and (3.56) that

Xa; bðhÞ ¼ ða; bÞ 2 ½0; 1�2

b ¼ að1� hÞ
aþ h� 2ah

; 0\a; b
 1� 1=e
� �

:

If Principal 1 chooses the strategy aS, then the best response of Principal 2 has
the form

bS aS
� � ¼ arg max

b2½0;1�
½Hbðx�ðaS� ða; bÞÞ � cbðbÞ�

¼ arg max
b2½0;1�

1 if x�ðaS; bÞ
 h;

0 otherwise,

�
þ lnð1� bÞ

� �
¼ 2a

aþ 1
:

In other words, Principal 2 benefits from choosing the minimum value of b that
implements the CBE h given aS. The goal function of Principal 1 can be written as
Haðx�ðaS; bSðaSÞÞÞ � caðaSÞ ¼ 1� caðaSÞ, where 0 < a 
 1 – 1/e. Therefore,
the e-optimal solution (aS*, bS*) of the game Г1(a, b) is the pair of strategies
(e, 2e/(e + 1)) yielding the Principals’ payoffs 1 + ln(1 − e) and 1 + ln(1 − 2e/
(e + 1)), respectively. (Here e represents an arbitrary small strictly positive value.)
Note a couple of aspects as follows. First, this solution is close to the utilitarian
solution, since both Principals choose almost zero strategies. Second, the Principal
moving second incurs higher costs. •

Example 3.18 For the data of Example 3.17, Principal 2 chooses the parameter b
and then Principal 1 chooses the parameter a, being aware of the opponent’s choice
(the so-called game Г1(b, a)). It follows from expressions (3.50) and (3.56) that

Xa; bðhÞ ¼ ða; bÞ 2 ½0; 1�2

a ¼ hb=ð1� b� hþ 2bhÞ; 0\a; b
 1� 1=e
n o

:

In this case, the e-optimal solution of the game Г1(b, a) is the pair of strategies
(e/(2 − e), e), yielding the Principals’ payoffs 1 + ln(1 − e/(2 − e)) and 1 + ln
(1 − e), respectively. Again, this solution is close to the utilitarian analog and the
Principal moving second incurs higher costs. •

Based on Examples 3.17 and 3.18, we make the following hypothesis, which is
well-known in theory of hierarchical games and their applications. The solutions of
the games Г1(a, b) and Г1(b, a) belong to the domain of compromise (if none-
mpty), and the Principals compete for the first move: the Principal moving first
generally compels the opponent “to agree” with a nonbeneficial equilibrium. This
property appears in many control models of organizational systems (e.g., see [165]).

Now, consider the games Г2 in which the Principal moving first possesses a
richer set of admissible strategies [71]: he/she chooses a relationship between his/
her actions and the opponent’s actions and then reports this relationship to the latter.
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Using the ideology of Germeier’s theorem [71], one can expect the following. If the
domain of compromise is nonempty, the optimal strategy of Principal 1 (first
choosing the parameter a, i.e., in the game C2(a(�), b)) has the form

aG
� ðbÞ ¼ aS

�
if b ¼ bS

�
;

1 otherwise:

�
ð3:64Þ

In a practical interpretation, the strategy (3.64) means that Principal 1 suggests
the opponent to implement the solution (aS*; bS*) of the game Г1(a, b). If Principal
2 rejects the offer, Principal 1 threatens him/her with the choice of the worst-case
response. The game C2(a(�), b)) with strategy (3.64) leads to the same equilibrium
payoffs of the Principals as the game C1(a, b).

The game C2(b(�), a)) as well as the hierarchical games for Model II are
described by analogy.

Reflexive game of Principals
It is also possible to “superstruct” reflexive games [168] over a normal-form game
in which players possess nontrivial mutual awareness about some essential
parameters. Assume the distribution function F(r, x) contains a parameter
r 2 Y that describes uncertainty. Following the paper [168], denote by r1 and r2 the
beliefs of Principals 1 and 2 about the parameter r, by r12 the beliefs of Principal 1
about the beliefs of Principal 2, and so on.

Example 3.19 For Model II, choose Fðr; xÞ ¼ rþð1� rÞ x; r 2 Y ¼ ½0; 1�,
Hd(x) = x, Hc(x) = 1 – x, cd(d) = d, and cc(c) = k c. The corresponding CBE is
x*(d, c) = (d + r) / (d + c + r), and the Principals’ goal functions take the form

fdðd; cÞ ¼ ðdþ rÞ=ðdþ cþ rÞ � d; ð3:65Þ

fcðd; cÞ ¼ 1� ðdþ rÞ=ðdþ cþ rÞ � k2c: ð3:66Þ

If the parameter r 2 ½0; 1� is common knowledge [168] between the Principals,
then expressions (3.65) and (3.66) yield the following parametric NE of the
Principals’ game:

d� ¼ k

1þ k2

� �2

�r; ð3:67Þ

c� ¼ 1

ð1þ k2Þ2 : ð3:68Þ

These strategies implement the CBE
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x� d�; c�ð Þ ¼ k2

1þ k2
: ð3:69Þ

Interestingly, the equilibrium strategy (3.68) of Principal 2 and the corre-
sponding CBE (3.69) are independent of the parameter r 2 ½0; 1� under common
knowledge. The situation completely changes without the common knowledge
about this parameter.

Let r1 = r12 = r121 = r1212 = …, i.e., Principal 1 possesses some (generally,
incorrect) information r1 about the uncertain parameter r, supposing that his/her
beliefs are true and form common knowledge. Also, choose r2 = r21 = r212 =
r2121 = ��� = r, i.e., Principal 2 is aware of the true value of r and considers it as
common knowledge. In other words, Principal 2 does not know that the beliefs of
Principal 1 possibly differ from the reality.

Using expressions (3.67) and (3.68), we calculate the informational equilibrium
[165] of the Principals’ game as

d� ¼ k

1þ k2

� �2

�r1; c� ¼
1

ð1þ k2Þ2 ;

which implements the CBE

x� d�; c�ð Þ ¼ k2 þðr � r1Þð1þ k2Þ2
1þ k2 þðr � r1Þð1þ k2Þ2 : ð3:70Þ

Clearly, in the general case the CBE depends on the awareness of both
Principals; under common knowledge r1 = r, expression (3.70) takes form (3.69).
Implementing informational control [165, 168] as meta control (e.g., affecting the
beliefs of Principal 1 about the value of the uncertain parameter), we may
accordingly change the CBE. •

Example 3.20 For the data of Example 3.19, let Principal 2 possess adequate
awareness about the opponent’s beliefs. That is, the former knows that the beliefs of
Principal 1 may differ from the truth: r21 = r212 = r2121 = ��� = r1. Then in the

informational equilibrium Principal 1 still prefers the strategy d� ¼ k
1þk2

� 	2
�r1,

whereas Principal 2 chooses

c� r1; rð Þ ¼ 1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

1þ k2

� �2

�r1 þ r

s
þ r1 � r � k2

ð1þ k2Þ2 ;

which implements the CBE

146 3 Models of Informational Confrontation in Social Networks



x� d�; c� r1; rð Þð Þ ¼ k
k2 þðr � r1Þð1þ k2Þ2

ð1þ k2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
1þ k2

� 	2
�r1 þ r

r :

Obviously, in the case of common knowledge (r1 = r), we have
x*(d*, c*(r1, r)) = x*(d*, c*).

Therefore, as shown by this example, equilibria in reflexive games also essen-
tially depend on the mutual awareness of players, i.e., the beliefs about the
opponents’ awareness, the beliefs about their beliefs, and so on [168]. •

Besides, a nontrivial mutual awareness of Principals may cover not only the
parameters of the distribution function of the agents’ thresholds but also the
parameters of their payoff and/or cost functions, etc.

Example 3.21 For the data of Example 3.19, let Principal 1 possess an inadequate
awareness about the parameter k of the opponent’s cost function. In turn, Principal
2 knows the true value of this parameter, supposing the adequate awareness of
Principal 1.

Choose k1 = k12 = k121 = k1212 = …, i.e., Principal 1 has some (generally,
incorrect) information k1 about the uncertain parameter k, considering his/her
beliefs to be true and form common knowledge. Also choose k2 = k21 = k212 =
2121 = ��� = k, i.e., Principal 2 knows the true value of the parameter k, considering
it as common knowledge. Using expressions (3.67) and (3.68), we obtain the CBE

x� ¼ k21

k21 þ 1þk21
1þk2

� 	2 ;

which is implemented in the corresponding informational equilibrium. In case of
common knowledge (k1 = k), it becomes the CBE (36). •

The main results of Sect. 3.3 are as follows. It has been demonstrated how the
stochastic model of mob control [29] can be augmented by “superstructing” dif-
ferent game-theoretic models of interaction between control subjects that apply
informational influences on a mob for their personal benefit. A relatively “simple”
model of this controlled object (a mob) fits a rich arsenal of game theory, namely,
normal-form games, hierarchical games, reflexive games and other games.

A promising direction of future investigations consists in identification and
separation of typical distribution functions of the agents’ thresholds (e.g., by
analogy with the paper [17]). This would yield control templates and standard
solutions for informational control problems as well as for models of informational
confrontation.
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